2024年山东省青岛市超银中学数学九年级第一学期开学复习检测试题【含答案】
展开
这是一份2024年山东省青岛市超银中学数学九年级第一学期开学复习检测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)点(1,- 6)关于原点对称的点为( )
A.(-6,1)B.(-1,6)C.(6,- 1)D.(-1,- 6)
2、(4分)只用下列图形不.能.进行平面镶嵌的是( )
A.全等的三角形B.全等的四边形
C.全等的正五边形D.全等的正六边形
3、(4分)如图,在同一直线上,甲、乙两人分别从A,B两点同时向右出发,甲、乙均为匀速,图2表示两人之间的距离y(m)与所经过的时间t(s)之间的函数关系图象,若乙的速度为1.5m/s,则经过30s,甲自A点移动了( )
A.45mB.7.2mC.52.2mD.57m
4、(4分)如图,点在双曲线上,点在双曲线上,且轴,、在轴上,若四边形为矩形,则它的面积为( )
A.1B.2C.3D.4
5、(4分)下列说法正确的是( )
A.若你在上一个路口遇到绿灯,则在下一路口必遇到红灯
B.某蓝球运动员2次罚球,投中一个,则可断定他罚球命中的概率一定为50%
C.“明天我市会下雨”是随机事件
D.若某种彩票中奖的概率是1%,则买100张该种彩票一定会中奖
6、(4分)如果一次函数y=kx+b(k、b是常数)的图象不经过第二象限,那么k、b应满足的条件是( )
A.k>0,且b≤0B.k<0,且b>0C.k>0,且b≥0D.k<0,且b<0
7、(4分)下列二次根式中,是最简二次根式的是( )
A.B.C.D.
8、(4分)在一个不透明的袋子里放入8个红球,2个白球,小明随意地摸出一球,这个球是白球的概率为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=2,则CE的长为_______
10、(4分)阅读后填空:
已知:如图,,,、相交于点.
求证:.
分析:要证,可先证;
要证,可先证;
而用______可证(填或或).
11、(4分)某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为__分.
12、(4分)如图,已知点A(1,a)与点B(b,1)在反比例函数y=(x>0)图象上,点P(m,0)是x轴上的任意一点,若△PAB的面积为2,此时m的值是______.
13、(4分)如图,在直线m上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积依次是S1,S,S3,若S1+S3=10,则S=__.
三、解答题(本大题共5个小题,共48分)
14、(12分)解不等式组:,并把解集表示在数轴上.
15、(8分)问题的提出:如果点P是锐角内一动点,如何确定一个位置,使点P到的三顶点的距离之和的值为最小?
问题的转化:把绕点A逆时针旋转得到,连接,这样就把确定的最小值的问题转化成确定的最小值的问题了,请你利用图1证明:;
问题的解决:当点P到锐角的三顶点的距离之和的值为最小时,求和的度数;
问题的延伸:如图2是有一个锐角为的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.
16、(8分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点在小正方形的顶点上.
(1)在图1中画一个以AB为边的平行四边形ABCD,点C、D在小正方形的顶点上,且平行四边形ABCD的面积为15.
(2)在图2中画一个以AB为边的菱形ABEF(不是正方形),点E、F在小正方形的顶点上,请直接写出菱形ABEF的面积;
17、(10分)(1)提出问题:如图1,在正方形中,点E,H分别在BC,AB上,若于点O,求证;;
(2)类比探究:如图2,在正方形中,点B,E,G,F分别在AB,BC,CD,DA上,若于点O,探究线段EF与HG的数量关系,并说明理由;
(3)综合运用:在(2)问条件下,,如图3所示,已知,,求图中阴影部分的面积。
18、(10分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,且AE=CF,顺次连接B、E、D,F.求证:四边形BEDF是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)计算:3﹣的结果是_____.
20、(4分)将一个矩形纸片沿折叠成如图所示的图形,若,则的度数为________.
21、(4分)某地区为了增强市民的法治观念,随机抽取了一部分市民进行一次知识竞赛,将竞赛成绩(得分取整数)整理后分成五组并绘制成如图所示的频数直方图.请结合图中信息,解答下列问题:
抽取了多少人参加竞赛?
这一分数段的频数、频率分别是多少?
这次竞赛成绩的中位数落在哪个分数段内?
22、(4分)某种细菌的直径约为0.00 000 002米,用科学记数法表示该细菌的直径约为____米.
23、(4分)如图,中,,以为斜边作,使分别是的中点,则__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.
25、(10分)如图,四边形是正方形,点是边上的任意一点,于点,,且交于点,求证:
(1)
(2)
26、(12分)已知:如图,ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.
(1)求证:BE=DG;
(2)若∠B= 60 ,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数,可得答案.
【详解】
解:点(1,-6)关于原点对称的点的坐标是(-1,6);
故选:B.
本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.
2、C
【解析】
判断一种图形是否能够镶嵌,只要看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.根据以上结论逐一判断即可.
【详解】
解:A项,三角形的内角和是180°,是360°的约数,能镶嵌平面,不符合题意;
B项,四边形的内角和是360°,是360°的约数,能镶嵌平面,不符合题意;
C项,正五边形的一个内角的度数为180-360÷5=108,不是360的约数,不能镶嵌平面,符合题意;
D项,正六边形的一个内角的度数是180-360÷6=120,是360的约数,能镶嵌平面,不符合题意;故选C.
本题考查了平面镶嵌的知识,几何图形能镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.用一种正多边形单独镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.
3、C
【解析】
设甲与乙的距离为s,根据图像可求出解析式,即可进行求解.
【详解】
解:设甲与乙的距离为s,则关于t的函数为s=kt+b(k≠0),
将(0,12)(50,0)代入
得,
解得k=﹣0.24,b=12,
函数表达式,s=﹣0.24t+12(0≤t≤50),
则30秒后,s=4.8
设甲自A点移动的距离为y,则y+s=12+1.5×30
解得:y=52.2
∴甲自A点移动52.2m.
故选:C.
此题主要考查一次函数的图像,解题的关键是熟知一次函数解析式的求解.
4、B
【解析】
根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.
【详解】
解:过A点作AE⊥y轴,垂足为E,
∵点A在双曲线y=上,
∴四边形AEOD的面积为1,
∵点B在双曲线y=上,且AB∥x轴,
∴四边形BEOC的面积为3,
∴四边形ABCD为矩形,则它的面积为3−1=2.
故选B.
5、C
【解析】
解:A.若你在上一个路口遇到绿灯,则在下一路口不一定遇到红灯,故本选项错误;
B.某蓝球运动员2次罚球,投中一个,这是一个随机事件,但不能断定他罚球命中的概率一定为50%,故本选项错误;
C.明天我市会下雨是随机事件,故本选项正确;
D.某种彩票中奖的概率是1%,买100张该种彩票不一定会中奖,故该选项错误.
故选C.
6、A
【解析】
分析:由一次函数图象不经过第二象限可得出该函数图象经过第一、三象限或第一、三、四象限,再利用一次函数图象与系数的关系,即可找出结论.
详解:∵一次函数y=kx+b(k、b是常数)的图象不经过第二象限,
∴一次函数y=kx+b(k、b是常数)的图象经过第一、三象限或第一、三、四象限,
当一次函数y=kx+b(k、b是常数)的图象经过第一、三象限时,
k>0,b=0;
当一次函数y=kx+b(k、b是常数)的图象经过第一、三、四象限时,
k>0,b0,b⩽0.
故选A.
点睛:本题考查了一次函数图象与系数的关系,分一次函数图象过一、三象限和一、三、四象限两种情况进行分析.
7、D
【解析】
根据最简二次根式的概念即可求出答案.
【详解】
解:(A)原式=2,故A不是最简二次根式;
(B)原式=4,故B不是最简二次根式;
(C)原式=,故C不是最简二次根式;
故选:D.
本题考查最简二次根式,解题的关键是正确理解最简二次根式,本题属于基础题型.
8、C
【解析】
根据题意,易得这个不透明的袋子里有10个球,已知其中有2个白球,根据概率的计算公式可得答案.
【详解】
解:这个不透明的袋子里有10个球,其中2个白球,
小明随意地摸出一球,是白球的概率为:;
故选:C.
用到的知识点为:概率=所求情况数与总情况数之比.关键是准确找出总情况数目与符合条件的情况数目.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、5或
【解析】
分析:由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.
详解:∵四边形ABCD是菱形,
∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,
∵
∴△ABD是等边三角形,
∴BD=AB=6,
∴
∴
∴
∵点E在AC上,
∴当E在点O左边时
当点E在点O右边时
∴或;
故答案为或.
点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.
10、
【解析】
根据HL定理推出Rt△ABC≌Rt△DCB,求出∠ACB=∠DBC,再根据等角对等边证明即可.
【详解】
解:HL定理,理由是:
∵∠A=∠D=90°,
∴在Rt△ABC和Rt△DCB中
∴Rt△ABC≌Rt△DCB(HL),
∴∠ACB=∠DBC,
∴OB=OC,
故答案为:HL.
本题考查了全等三角形的判定定理和性质定理、等腰三角形的判定等知识点,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,AAS,ASA,SSS,直角三角形全等还有HL定理.
11、87.1.
【解析】
根据加权平均数的含义和求法,可求出甲的平均成绩.
【详解】
面试和笔试的成绩分别为81分和90分,面试成绩和笔试成绩的权分别是1和4,
甲的平均成绩为:(分).
故答案为:87.1.
考查加权平均数的计算,掌握加权平均数的计算方法是解题的关键.
12、﹣1或3
【解析】
把点A(1,a)与点B(b,1)代入反比例函数y=(x>0),求出A,B坐标,延长AB交x轴于点C,如图2,设直线AB的解析式为y=mx+n,求出点C的坐标,用割补法求出PC的值,结合点C的坐标即可.
【详解】
解:∵点A(1,a)与点B(b,1)在反比例函数y=(x>0)图象上,
∴a=2,b=2,
∴点A(1,2)与点B(2,1),
延长AB交x轴于点C,如图2,
设直线AB的解析式为y=mx+n,
则有,
解得,
∴直线AB的解析式为y=﹣x+1.
∵点C是直线y=﹣x+1与x轴的交点,
∴点C的坐标为(1,0),OC=1,
∵S△PAB=2,
∴S△PAB=S△PAC﹣S△PBC=×PC×2﹣×PC×1=PC=2,
∴PC=2.
∵C(1,0),P(m,0),
∴|m﹣1|=2,
∴m=﹣1或3,
故答案为:﹣1或3.
本题考查的是反比例函数,熟练掌握反比例函数图像上点的特征是解题的关键.
13、4
【解析】
根据题意,可以证明S与S1两个平行四边形的高相等,长是S1的2倍,S3与S的长相等,高是S的一半,这样就可以把S1和S3用S来表示,从而计算出S的
【详解】
解:根据正三角形的性质,∠ABC=∠HFG=∠DCE=60°,
∴AB∥HF//DC//GN,
设AC与FH交于P,CD与HG交于Q,
∴△PFC、△QCG和△NGE是正三角形,
∵F、G分别是BC、CE的中点,
故答案为:4.
本题主要考查了等边三角形的性质及平行四边形的面积求法,平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=ah.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.
三、解答题(本大题共5个小题,共48分)
14、-2≤x<2
【解析】
先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.
【详解】
解:
∵解不等式①得:x<2,
解不等式②得:x≥-2,
∴不等式组的解集为-2≤x<2,
在数轴上表示为:
本题考查了解一元一次不等式组,在数轴上表示不等式组的解集等知识点,能求出不等式组的解集是解此题的关键.
15、(1)证明见解析;(2)满足:时,的值为最小;(3)点P到这个三角形各顶点的距离之和的最小值为.
【解析】
问题的转化:根据旋转的性质证明△APP´是等边三角形,则PP´=PA,可得结论;
问题的解决:运用类比的思想,把绕点A逆时针旋转60度得到,连接,由“问题的转化”可知:当B、P、P´、C´在同一直线上时,的值为最小,确定当:时,满足三点共线;
问题的延伸:如图3,作辅助线,构建直角△ABC´,利用勾股定理求AC´的长,即是点P到这个三角形各顶点的距离之和的最小值.
【详解】
问题的转化:
如图1,
由旋转得:∠PAP´=60°,PA=P´A,
△APP´是等边三角形,
∴PP´=PA,
∵PC=P´C,
.
问题的解决:
满足:时,的值为最小;
理由是:如图2,把绕点A逆时针旋转60度得到,连接,
由“问题的转化”可知:当B、P、P´、C´在同一直线上时,的值为最小,
,∠APP´=60°,
∴∠APB+∠APP´=180°,
、P、P´在同一直线上,
由旋转得:∠AP´C´=∠APC=120°,
∵∠AP´P=60°,
∴∠AP´C´+∠A P´P=180°,
、P´、C´在同一直线上,
、P、P´、C´在同一直线上,
此时的值为最小,
故答案为:;
问题的延伸:
如图3,中,,,
,,
把绕点B逆时针旋转60度得到,连接,
当A、P、P´、C´在同一直线上时,的值为最小,
由旋转得:BP=BP´,∠PBP´=60°,PC=P´C´,BC=B´C´,
是等边三角形,
∴PP´=PB,
∵∠ABC=∠APB+∠CBP=∠APB+∠C´BP´=30°,
∴∠ABC´=90°,
由勾股定理得:AC´=,
∴PA+PB+PC=PA+PP´+P´C´=AC´=,
则点P到这个三角形各顶点的距离之和的最小值为.
本题主要考查三角形的旋转变换的性质、勾股定理、等边三角形的判定与性质等知识点,将待求线段的和通过旋转变换转化为同一直线上的线段来求是解题的关键,学会利用旋转的方法添加辅助线,构造特殊三角形解决问题,属于中考压轴题.
16、 (1)见解析;(2)见解析;菱形ABEF的面积为8.
【解析】
(1)由图可知A、B间的垂直方向长为3,要使平行四边形的面积为15,结合网格特点则可以在B的水平方向上取一条长为5的线段,可得点C,据此可得平行四边形;
(2)根据网格特点,菱形性质画图,然后利用菱形所在正方形的面积减去三角形的面积以及小正方形的面积即可求得面积.
【详解】
(1)如图1所示,平行四边形ABCD即为所求;
(2)如图2所示,菱形ABCD为所求,
菱形ABCD的面积=4×4-4××3×1-2×1×1=16-6-2=8.
本题考查了作图——应用与设计,涉及了平行四边形的性质,菱形的性质等,正确把握相关图形的性质以及网格的结构特点是解题的关键.
17、(1)见解析;(2)EF=HG,理由见解析;(3).
【解析】
(1)根据正方形的性质和已知条件可得:AB= DA,∠ABE=∠DAH=∠AOD =90°,根据同角的余角相等得出∠BAE=∠ADH,然后利用ASA即可证出△ABE≌△DAH,从而得出;
(2)过点D作DN∥GH交AB于N,过点A作AM∥FE交BC于M,根据(1)中结论,即可得出AM=DN,然后根据平行四边形的判定证出:四边形AMEF和四边形DNHG都是平行四边形,根据平行四边形的性质证出EF=AM,HG=DN,从而证出EF=HG;
(3)过点F作FP⊥BC于P,根据平行可证:△OFH∽OEG,∠FHO=∠EGO,列出比例式可得:,然后根据相似三角形的判定,证出△AHF∽△CGE,列出比例式,即可求出AF,然后根据矩形的判定可得四边形ABPF为矩形,再根据矩形的性质可得:BP=AF=1,PF=AB=4,利用勾股定理即可求出FE,从而算出FO、OE、HO和OG,最后根据三角形的面积公式计算面积即可.
【详解】
解:(1)∵四边形ABCD是正方形,
∴AB= DA,∠ABE=∠DAH=∠AOD =90°
∴∠BAE+∠EAD=90°∠EAD+∠ADH=90°
∴∠BAE=∠ADH
在△ABE和△DAH中
∴△ABE≌△DAH
∴;
(2)EF=HG,理由如下
过点D作DN∥GH交AB于N,过点A作AM∥FE交BC于M
∵,
∴AM⊥DN,
由(1)中结论可得:AM=DN
∵四边形ABCD是正方形,
∴AD∥BC,AB∥DC
∴四边形AMEF和四边形DNHG都是平行四边形
∴EF=AM,HG=DN
∴EF=HG;
(3)过点F作FP⊥BC于P
∵四边形ABCD是正方形,
∴AB=BC=,∠A=∠B=∠C=90°,AB∥CD
∴∠AHG=∠CGH
∵
∴△OFH∽OEG,∠FHO=∠EGO
∴,∠AHG-∠FHO=∠CGH-∠EGO
∴FO=,HO=,∠AHF=∠CGE
∴△AHF∽△CGE
∴
∴AF=
∵∠A=∠B=∠FPB=90°
∴四边形ABPF为矩形
∴BP=AF=1,PF=AB=4
∴PE=BE-BP=1
根据勾股定理可得:FE=
∴GH=FE=
∴FO=,EO=FE-FO=,HO==,OG=GH-HO=
∴S阴影=.
此题考查的是正方形的性质、全等三角形的判定及性质、平行四边形的判定及性质、相似三角形的判定及性质和勾股定理,掌握正方形的性质定理、全等三角形的判定定理及性质定理、平行四边形的判定定理及性质定理、相似三角形的判定定理及性质定理和用勾股定理解直角三角形是解决此题的关键.
18、见解析
【解析】
首先连接BD,交AC于点O,由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA=OC,OB=OD,又由AE=CF,可得OE=OF,然后根据对角线互相平分的四边形是平行四边形得出结论.
【详解】
解:证明:连接BD,交AC于点O,如图所示,
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AE=CF,
∴OA﹣AE=OC﹣CF,
即OE=OF,
∴四边形DEBF是平行四边形.
本题考查了平行四边形的判定与性质,此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2.
【解析】
直接利用二次根式的加减运算法则计算得出答案.
【详解】
解:-=.
故答案为:.
此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.
20、126°
【解析】
直接利用翻折变换的性质以及平行线的性质分析得出答案.
【详解】
解:如图,由题意可得:
∠ABC=∠BCE=∠BCA=27°,
则∠ACD=180°-27°-27°=126°.
故答案为:126°.
本题主要考查了翻折变换的性质以及平行线的性质,正确应用相关性质是解题关键.
21、(1)抽取了人参加比赛;(2)频数为,频数为0.25;(3)
【解析】
(1)将每组的人数相加即可;
(2)看频数直方图可知这一分数段的频数为12,用频数÷总人数即可得到频率;
(3)直接通过频数直方图即可得解.
【详解】
解:(人),
答:抽取了人参加比赛;
频数为,频数为;
这次竞赛成绩的中位数落在这个分数段内.
本题主要考查频数直方图,中位数等,解此题的关键在于熟练掌握其知识点,通过直方图得到有用的信息.
22、
【解析】
试题解析:0.00 000 002=2×10-8.
点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
23、
【解析】
先根据题意判断出△DEF的形状,由平行线的性质得出∠EFC的度数,再由三角形外角的性质求出∠DFC的度数,再根据三角形内角和定理即可得出结论.
【详解】
∵E、F分别是BC、AC的中点,∠CAD=∠CAB=28°,
∴EF是△ABC的中位线,
∴EF=AB,∠EFC=∠CAB=26°.
∵AB=AC,△ACD是直角三角形,点E是斜边AC的中点,
∴DF=AF=CF,
∴DF=EF,∠CAD=∠ADF=28°.
∵∠DFC是△AFD的外角,
∴∠DFC=28°+28°=56°,
∴∠EFD=∠EFC+∠DFC=28°+56°=84°,
∴∠EDF==48°.
故答案为:48°.
本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.
二、解答题(本大题共3个小题,共30分)
24、10cm
【解析】
先有∠A=30°,那么∠ABC=60°,结合BD是角平分线,那么可求出∠DBC=∠ABD=30°,在Rt△DBC中,利用直角三角形中30°的角所对的直角边等于斜边的一半,可求出BD,再利用勾股定理可求BC,同理,在Rt△ABC中,AB=2BC,即可求AB.
【详解】
解:在Rt△ABC中,∠C=90°,∠A=∠30°,
∴∠ABC=60°.
∵BD是∠ABC的平分线,
∴∠ABD=∠CBD=30°.
∴∠ABD=∠BAD,
∴AD=DB,
在Rt△CBD中,CD=5cm,∠CBD=30°,
∴BD=10cm.
由勾股定理得,BC=5,
∴AB=2BC=10cm.
本题利用了角平分线定义、直角三角形中30°的角所对的直角边等于斜边的一半、勾股定理等知识.
25、(1)见详解;(2)见详解.
【解析】
(1)证明△AED≌△BFA即可说明DE=AF;
(2)由△AED≌△BFA可得AE=BF,又AFAE=EF,所以结论可证.
【详解】
证明:(1)∵四边形ABCD是正方形,
∴AD=AB,∠DAE+∠BAF=90°.
∵∠ABF+∠BAF=90°,
∴∠DAE=∠ABF.
又∠AED=∠BFA.
∴△AED≌△BFA(AAS).
∴DE=AF;
(2)∵△AED≌△BFA,
∴AE=BF.
∵AF-AE=EF,
∴AF-BF=EF.
本题主要考查了正方形的性质、全等三角形的判定和性质,解决此类问题一般是通过三角形的全等转化线段.
26、(1)见解析(2)当时,四边形是菱形,理由见解析
【解析】
(1)易证,则(2)E点为BF中点时符合题意,即可求解.
【详解】
证明:(1)∵四边形是平行四边形,
∴.
∵是边上的高,且是由沿方向平移而成.
∴.
∴.∵,
∴.
∴.
(2)当时,四边形是菱形.
∵,,
∴四边形是平行四边形.
∵中,,
∴,∴.
∵,∴.∴.
∴四边形是菱形.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024-2025学年山东省青岛市市南区超银中学七年级(上)开学数学试卷(含答案),共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省青岛市市南区超银中学2024-2025学年上学期开学考试七年级数学试题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份124,2024年山东省青岛市青岛超银中学中考一模数学试题,共5页。