2024年江西省上饶县九年级数学第一学期开学学业质量监测模拟试题【含答案】
展开
这是一份2024年江西省上饶县九年级数学第一学期开学学业质量监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列命题的逆命题不正确的是( )
A.若,则B.两直线平行,内错角相等
C.等腰三角形的两个底角相等D.对顶角相等
2、(4分)下列化简正确的是( )
A.B.C.D.
3、(4分)将点P(5,3)向左平移4个单位,再向下平移1个单位后,落在函数y=kx﹣2的图象上,则k的值为( )
A.k=2B.k=4C.k=15D.k=36
4、(4分)如图, OABC的顶点O,A,C的坐标分别是(0,0),(2,0),(,1),则点B的坐标是( )
A.(1,2)B.(,2)C.(,1)D.(3,1)
5、(4分)在平面直角坐标系中,分别过点A(m,0),B(m+2,0)作垂直于x轴的直线l1和l2,探究直线 l1、l2与函数y=的图像(双曲线)之间的关系,下列结论错误的是( )
A.两条直线中总有一条与双曲线相交
B.当 m=1 时,两条直线与双曲线的交点到原点的距离相等
C.当 m<0 时,两条直线与双曲线的交点都在 y 轴左侧
D.当 m>0 时,两条直线与双曲线的交点都在 y 轴右侧
6、(4分)在直角坐标系中,点关于原点对称的点的坐标是( )
A.B.C.D.
7、(4分)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为
A.(1.4,-1)B.(1.5,2)C.(1.6,1)D.(2.4,1)
8、(4分)张老师和李老师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点5分、7点15分离家骑自行车上班,刚好在校门口相遇,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的速度是米/分,则可列得方程为( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为______.
10、(4分)将矩形ABCD折叠,使得对角线的两个端点A.C重合,折痕所在直线交直线AB于点E,如果AB=4,BE=1,则BC的长为______.
11、(4分)不等式2x-1>x解集是_________.
12、(4分)已知关于x的不等式组的整数解共有5个,则a的取值范围是_________
13、(4分)点P的坐标为,则点P到x轴的距离是________,点P到y轴的距离是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)定义:有三个角相等的四边形叫做三等角四边形.
(1)在三等角四边形中,,则的取值范围为________.
(2)如图①,折叠平行四边形,使得顶点、分别落在边、上的点、处,折痕为、.求证:四边形为三等角四边形;
(3)如图②,三等角四边形中,,若,,,则 的长度为多少?
15、(8分)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=OC,连接 CE、OE,连接AE交OD于点F.
(1)求证:OE=CD;
(2)若菱形ABCD的边长为6,∠ABC=60°,求AE的长.
16、(8分)如图,在菱形中,,点将对角线三等分,且,连接.
(1)求证:四边形为菱形
(2)求菱形的面积;
(3)若是菱形的边上的点,则满足的点的个数是______个.
17、(10分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF//AB交AC于F
(1)求证:AE=DF,
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
18、(10分)王老师为了了解学生在数学学习中的纠错情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的八年级(5)班和八年级(6)班进行了检测.并从两班各随机抽取10名学生的得分绘制成下列两个统计图.根据以上信息,整理分析数据如下:
(1)求出表格中a,b,c的值;
(2)你认为哪个班的学生纠错得分情况比较整齐一些,通过计算说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)直角三角形的两条直角边长分别为、,则这个直角三角形的斜边长为________cm.
20、(4分)以正方形ABCD的边AD为一边作等边△ADE,则∠AEB的度数是________.
21、(4分)直线关于轴对称的直线的解析式为______.
22、(4分)如图,直线y=-x-与x,y两轴分别交于A,B两点,与反比例函数y=的图象在第二象限交于点C.过点A作x轴的垂线交该反比例函数图象于点D.若AD=AC,则点D的纵坐标为___.
23、(4分)在式子中,x的取值范围是__________________.
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简,再求值:,其中
25、(10分)某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.
请根据图中的信息解答下列问题
(1)补全条形统计图
(2)该年级共有700人,估计该年级足球测试成绩为D等的人数为__________人;
(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.
26、(12分)如图,利用两面靠墙(墙足够长),用总长度37米的篱笆(图中实线部分)围成一个矩形鸡舍ABCD,且中间共留三个1米的小门,设篱笆BC长为x米.
(1)AB=_____米.(用含x的代数式表示)
(2)若矩形鸡舍ABCD面积为150平方米,求篱笆BC的长.
(3)矩形鸡舍ABCD面积是否有可能达到210平方米?若有可能,求出相应x的值;若不可能,则说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先把一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.
【详解】
解:A.若a2=b2,则a=b的逆命题是若a=b,则a2=b2,正确;
B.两直线平行,内错角相等的逆命题是内错角相等,两直线平行,正确;
C.等腰三角形的两个底角相等的逆命题是两底角相等的三角形是等腰三角形,正确;
D.对顶角相等的逆命题是相等的角是对顶角,错误;
故选:D.
本题考查了命题与定理,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
2、A
【解析】
根据二次根式的性质以及合并同类二次根式法则,一一化简即可.
【详解】
A. 正确.
B. 错误.
C. 错误.
D. 错误. .
故选A.
此题考查二次根式的加减法,二次根式的性质与化简,解题关键在于掌握运算法则.
3、B
【解析】
根据点的平移规律,得出平移后的点的坐标,将该点坐标代入y=kx﹣2中求k即可.
【详解】
将点P(5,3)向左平移1个单位,再向下平移1个单位后点的坐标为(1,2),
将点(1,2)代入y=kx﹣2中,得k﹣2=2,
解得k=1.
故选B.
本题考查了一次函数图象上点的坐标特点,点的坐标平移规律.关键是找出平移后点的坐标.
4、C
【解析】
根据平行四边形的性质可证△CDO≌△BEA,得出CD=BE,OD=AE,再由已知条件计算得出BE,OE的长度即可.
【详解】
解:过点C作CD⊥OA于点D,过点B作BE⊥OA于点E,
∴∠CDO=∠BEA=90°,
∵四边形OABC是平行四边形,
∴OC=AB,OC∥AB,
∴∠COD=∠BAE
∴在△CDO与△BEA中,
CO=AB,∠COD=∠BAE,∠CDO=∠BEA=90°,
∴△CDO≌△BEA(AAS),
∴CD=BE,OD=AE,
又∵O,A,C的坐标分别是(0,0),(2,0),(,1)
∴OD=,CD=1,OA=2,
∴BE=CD=1,AE=OD=,
∴OE=2+=,
∴点B坐标为:(,1),
故答案为:C
本题考查了平行四边形的性质及全等三角形的判定,解题的关键是熟悉平行四边形的性质.
5、C
【解析】
反比例函数y=的图象位于第一、三象限,过点A(m,0),B(m+2,0)垂直于x轴的直线l1和l2根据m的值分别讨论各种情况,并对选项做出判断.
【详解】
解:反比例函数y=的图象位于第一、三象限,过点A(m,0),B(m+2,0)垂直于x轴的直线l1和l2
无论m为何值,直线l1和l2至少由一条与双曲线相交,因此A正确;
当m=1时,直线l1和l2与双曲线的交点为(1,3)(3,1)它们到原点的距离为 ,因此B是正确的;
当m<0时,但m+2的值不能确定,因此两条直线与双曲线的交点不一定都在y轴的左侧,因此C选项是不正确的;
当m>0时,m+2>0,两条直线与双曲线的交点都在y轴右侧,是正确的,
故选:C.
本题考查一次函数和反比例函数的图象和性质,根据m的不同取值,讨论得出不同结果.
6、D
【解析】
根据关于原点对称,横纵坐标都互为相反数,进行计算即可.
【详解】
解:(2,1)关于原点的对称点坐标为(﹣2,﹣1),故选:D.
本题考查关于原点对称,掌握关于原点对称,横纵坐标都互为相反数是解题的关键.
7、C
【解析】
试题分析:∵A点坐标为:(2,4),A1(﹣2,1),
∴平移和变化规律是:横坐标减4,纵坐标减1.
∴点P(2.4,2)平移后的对应点P1为:(-1.6,-1).
∵点P1绕点O逆时针旋转180°,得到对应点P2,
∴点P1和点P2关于坐标原点对称.
∴根据关于原点对称的点的坐标是横、纵坐标都互为相反数的性质,得P2点的坐标为:(1.6,1).
故选C.
8、A
【解析】
设张老师骑自行车的速度是x米/分,则李老师骑自行车的速度是1.2x米/分,根据题意可得等量关系:张老师行驶的路程3000÷他的速度-李老师行驶的路程3000÷他的速度=10分钟,根据等量关系列出方程即可.
【详解】
设张老师骑自行车的速度是x米/分,由题意得:
,
故选:A.
此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,表示出李老师和张老师各行驶3000米所用的时间,根据时间关系列出方程.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、32a
【解析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.
【详解】
如图所示:
∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=a,
∴A2B1=a,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4a,
A4B4=8B1A2=8a,
A5B5=16B1A2=16a,
以此类推:A6B6=32B1A2=32a.
故答案是:32a.
考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.
10、或2
【解析】
分类讨论:当点E在线段AB上,连结CE,根据折叠的性质得到AE=CE=3,然后在Rt△BCE中,利用勾股定理计算BC;当点E在线段AB的延长线上,连结CE,根据折叠的性质得AE=CE=5,在Rt△BCE中,根据勾股定理计算BC.
【详解】
当点E在线段AB上,如图1,连结CE,
∵AB=4,BE=1,
∴AE=3,
∵将矩形ABCD折叠,使得对角线的两个端点A. C重合,
∴AE=CE=3,
在Rt△BCE中,BC=;
当点E在线段AB的延长线上,如图2,连结CE,
∵AB=4,BE=1,
∴AE=5,
∵将矩形ABCD折叠,使得对角线的两个端点A. C重合,
∴AE=CE=5,
在Rt△BCE中,BC=,
∴BC的长为或.
本题考查折叠问题,分情况解答是解题关键.
11、x>1
【解析】
将不等式未知项移项到不等式左边,常数项移项到方程右边,合并后将x的系数化为1,即可求出原不等式的解集.
【详解】
解:2x-1>x,
移项得:2x-x>1,
合并得:x>1,
则原不等式的解集为x>1.
故答案为:x>1
此题考查了一元一次不等式的解法,解一元一次不等式的步骤为:去分母,去括号,移项,合并同类项,将x的系数化为1求出解集.
12、-3
相关试卷
这是一份2024年广西梧州市九年级数学第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年安徽省瑶海区九年级数学第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江西省信丰县九年级数学第一学期开学学业质量监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。