年终活动
搜索
    上传资料 赚现金

    2024年吉林省长春市解放大路中学数学九上开学调研试题【含答案】

    2024年吉林省长春市解放大路中学数学九上开学调研试题【含答案】第1页
    2024年吉林省长春市解放大路中学数学九上开学调研试题【含答案】第2页
    2024年吉林省长春市解放大路中学数学九上开学调研试题【含答案】第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年吉林省长春市解放大路中学数学九上开学调研试题【含答案】

    展开

    这是一份2024年吉林省长春市解放大路中学数学九上开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)甲、乙两班分别由10名选手参加健美比赛,两班参赛选手身高的方差分别是S甲2=1.5,S乙2=2.5,则下列说法正确的是( )
    A.甲班选手比乙班选手的身高整齐B.乙班选手比甲班选手的身高整齐
    C.甲、乙两班选手的身高一样整齐D.无法确定哪班选手的身高整齐
    2、(4分)已知点P(1,-3)在反比例函数的图象上,则的值是
    A.3B.-3C.D.
    3、(4分)如图,已知四边形ABCD是边长为4的正方形,E为AB的中点,将△ADE绕点D沿逆时针方向旋转后得到△DCF,连接EF,则EF的长为( )
    A.2B.2C.2D.2
    4、(4分)在平面直角坐标系中,若点的坐标为,则点在( )
    A.第一象限.B.第二象限.C.第三象限D.第四象限
    5、(4分)若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为( )
    A.4.5cmB.18cmC.9cmD.36cm
    6、(4分)若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是( )
    A.2B.﹣2C.1D.﹣1
    7、(4分)如图,小明为检验M、N、P、Q四点是否共圆,用尺规分别作了MN、MQ的垂直平分线交于点O,则M、N、P、Q四点中,不一定在以O为圆心,OM为半径的圆上的点是( )
    A.点MB.点NC.点PD.点Q
    8、(4分)在中,,,的对边分别是a,b,c,下列条件中,不能判定是直角三角形的是( )
    A.B.
    C.,,D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知,,则代数式的值为________.
    10、(4分)如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是_____.
    11、(4分)若关于x的分式方程=2a无解,则a的值为_____.
    12、(4分)如图,边长为4的菱形ABCD中,∠ABC=30°,P为BC上方一点,且,则PB+PC的最小值为___________.
    13、(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)先化简÷(-),然后再从-2<x≤2的范围内选取一个合适的x的整数值代入求值
    15、(8分)(1)解不等式组
    (2)先化简分式,然后在0,1,2,3中选一个你认为合适的a值,代入求值。
    16、(8分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务,求原计划每小时抢修道路多少米?
    17、(10分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,在平面直角坐标系中如图所示:完成下列问题:
    (1)画出△ABC绕点O逆时针旋转90∘后的△A BC;点B1的坐标为___;
    (2)在(1)的旋转过程中,点B运动的路径长是___
    (3)作出△ABC关于原点O对称的△ABC;点C的坐标为___.
    18、(10分)先分解因式,再求值:,其中,.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在直角坐标系中,已知矩形ABCD的两个顶点A(3,0)、B(3,2),对角线AC所在的直线L,那么直线L对应的解析式是______________
    20、(4分)一次函数y=2x-6的图像与x轴的交点坐标为 .
    21、(4分)如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.
    22、(4分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为______.
    23、(4分)如图是甲、乙两名射由运动员的10次射击训练成绩的折线统计图观察图形,比较甲、乙这10次射击成绩的方差S甲2、S乙2的大小:S甲2____S乙2(填“>”、“<”或“=”)
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,点A的坐标为(﹣,0),点B的坐标为(0,3).
    (1)求过A,B两点直线的函数表达式;
    (2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.
    25、(10分)为了了解某公司员工的年收入情况,随机抽查了公司部分员工年收入情况并绘制如图所示统计图.
    (1)请按图中数据补全条形图;
    (2)由图可知员工年收入的中位数是 ,众数是 ;
    (3)估计该公司员工人均年收入约为多少元?
    26、(12分)我市某中学对学校倡导的“压岁钱捐款活动”进行抽样调查,得到一组学生捐款的数据,
    下图是根据这组数据绘制的统计图,图中从左到右长方形的高度之比为2:4:5:8:6.又知此次调查中捐款20元和25元的学生一共28人.
    (1)他们一共调查了多少学生?
    (2)写出这组数据的中位数、众数;
    (3)若该校共有2000名学生,估计全校学生大约捐款多少元?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    ∵=1.5,=2.5,
    ∴<,
    则甲班选手比乙班选手身高更整齐,
    故选A.
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    2、B
    【解析】
    根据点在曲线上,点的坐标满足方程的关系,将P(1,-1)代入,得,解得k=-1.故选B.
    3、D
    【解析】
    先利用勾股定理计算出DE,再根据旋转的性质得∠EDF=∠ADC=90°,DE=DF,则可判断△DEF为等腰直角三角形,然后根据等腰直角三角形的性质计算EF的长.
    【详解】
    ∵E为AB的中点,AB=4,∴AE=2,
    ∴DE==2.
    ∵四边形ABCD为正方形,∴∠A=∠ADC=90°,∴∠ADE+∠EDC=90°.
    ∵△ADE绕点D沿逆时针方向旋转后得到△DCF,∴∠ADE=∠CDF,DE=DF,∴∠CDF+∠EDC=90°,∴△DEF为等腰直角三角形,∴EF=DE=2.
    故选D.
    本题主要考查了旋转的性质、正方形的性质一勾股定理的应用,熟练掌握相关知识是解题的关键.
    4、D
    【解析】
    根据点的坐标为的横纵坐标的符号,可得所在象限.
    【详解】
    ∵2>0,-2<0,
    ∴点在位于平面直角坐标系中的第四象限.
    故选D.
    本题考查了平面直角坐标系中各象限内点的坐标的符号特征.四个象限内点的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    5、B
    【解析】
    试题分析:根据三角形的中位线定理即可得到结果.
    由题意得,原三角形的周长为,
    故选B.
    考点:本题考查的是三角形的中位线
    点评:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
    6、D
    【解析】
    试题分析:将点(m,n)代入函数y=2x+1,得到m和n的关系式,再代入2m﹣n即可解答.
    解:将点(m,n)代入函数y=2x+1得,
    n=2m+1,
    整理得,2m﹣n=﹣1.
    故选D.
    7、C
    【解析】
    试题分析:连接OM,ON,OQ,OP,由线段垂直平分线的性质可得出OM=ON=OQ,据此可得出结论.
    【详解】
    解:连接OM,ON,OQ,OP,
    ∵MN、MQ的垂直平分线交于点O,
    ∴OM=ON=OQ,
    ∴M、N、Q在以点O为圆心的圆上,OP与ON的大小关系不能确定,
    ∴点P不一定在圆上.
    故选C.
    考点:点与圆的位置关系;线段垂直平分线的性质.
    8、D
    【解析】
    根据三角形内角和定理以及直角三角形的性质即可求出答案.
    【详解】
    A. ∵,,∴∠C=90°, ∴是直角三角形,故能确定;
    B. ,,∴∠C=90°, ∴是直角三角形,故能确定;
    C. ∵, ∴是直角三角形,故能确定;
    D.设a=1,b=2,c=2,
    ∵12+22≠22,∴△ABC不是直角三角形,故D不能判断.
    故选:D.
    本题考查了三角形的内角和,勾股定理的逆定理,解题的关键是熟练运用三角形的性质,本题属于基础题型.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    原式通分并利用同分母分式的加法法则计算得到最简结果,将a与b的值代入计算即可求出值.
    【详解】
    原式=,
    当a=+1,b=-1时,原式=,
    故答案为:2
    此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
    10、
    【解析】
    过点D作DE⊥DP交BC的延长线于E,先判断出四边形DPBE是矩形,再根据等角的余角相等求出∠ADP=∠CDE,再利用“角角边”证明△ADP和△CDE全等,根据全等三角形对应边相等可得DE=DP,然后判断出四边形DPBE是正方形,再根据正方形的面积公式解答即可.
    解:如图,过点D作DE⊥DP交BC的延长线于E,
    ∵∠ADC=∠ABC=90°,
    ∴四边形DPBE是矩形,
    ∵∠CDE+∠CDP=90°,∠ADC=90°,
    ∴∠ADP+∠CDP=90°,
    ∴∠ADP=∠CDE,
    ∵DP⊥AB,
    ∴∠APD=90°,
    ∴∠APD=∠E=90°,
    在△ADP和△CDE中,
    ∠ADP=∠CDE,∠APD=∠E,AD=CD,
    ∴△ADP≌△CDE(AAS),
    ∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,
    ∴矩形DPBE是正方形,
    ∴DP=.
    故答案为3.
    “点睛”本题考查了正方形的判定与性质,全等三角形的判定与性质,熟记各性质并作辅助线构造出全等三角形和正方形是解题的关键.
    11、1或
    【解析】
    分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.
    详解:去分母得:
    x-3a=2a(x-3),
    整理得:(1-2a)x=-3a,
    当1-2a=0时,方程无解,故a=;
    当1-2a≠0时,x==3时,分式方程无解,
    则a=1,
    故关于x的分式方程=2a无解,则a的值为:1或.
    故答案为1或.
    点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.
    12、
    【解析】
    过点A作于点E,根据菱形的性质可推出,过点P作于点F,过点P作直线,作点C关于直线MN的对称点H,连接CH交MN于点G,连接BH交直线MN于点K,连接PH,根据轴对称可得CH=2CG=2,根据两点之间线段最短的性质,PB+PC的最小值为BH的长,根据勾股定理计算即可;
    【详解】
    过点A作于点E,如图,
    ∵边长为4的菱形ABCD中,,
    ∴AB=AC=4,
    ∴在中,

    ∴,
    ∵,
    ∴,
    过点P作于点F,过点P作直线,作点C关于直线MN的对称点H,连接CH交MN于点G,连接BH交直线MN于点K,连接PH,如图,
    则,,
    ∴四边形CGPF是矩形,
    ∴CG=PF,
    ∵,
    ∴,
    ∴PF=1,
    ∴CG=PF=1,
    根据抽对称的性质可得,
    CG=GH,PH=PC,
    ∴CH=2CG=2,
    根据两点之间线段最短的性质,得,

    即,
    ∴PB+PC的最小值为BH的长,
    ∵,,
    ∴,
    ∴在中,

    ∴PB+PC的最小值为.
    故答案为:.
    本题主要考查了菱形的性质,准确分析轴对称的最短路线知识点是解题的关键.
    13、1.
    【解析】
    试题解析:∵由题意可知,AQ是∠DAB的平分线,
    ∴∠DAQ=∠BAQ.
    ∵四边形ABCD是平行四边形,
    ∴CD∥AB,BC=AD=2,∠BAQ=∠DQA,
    ∴∠DAQ=∠DAQ,
    ∴△AQD是等腰三角形,
    ∴DQ=AD=2.
    ∵DQ=2QC,
    ∴QC=DQ=,
    ∴CD=DQ+CQ=2+=,
    ∴平行四边形ABCD周长=2(DC+AD)=2×(+2)=1.
    故答案为1.
    三、解答题(本大题共5个小题,共48分)
    14、3.
    【解析】
    先将原分式进行化解,化解过程中注意不为0的量,根据不为0的量结合x的取值范围得出合适的x的值,将其代入化简后的代数式中即可得出结论.
    【详解】
    解:原式===.
    其中,即x≠﹣1、0、1.
    又∵﹣2<x≤2且x为整数,∴x=2.
    将x=2代入中得:==3.
    考点:分式的化简求值.
    15、(1)﹣2<x≤1(2)见解析
    【解析】
    (1)通过计算得出不等式组中1-3(x-1)<8-x的解集为x>﹣2,—+3≥x+1的解集为x≤1,得出不等式组的解集为﹣2<x≤1.
    (2)先化简得出结果,要想式分式有意义,则分式的分母不能为0,即x≠0、1、3.则x只能取0,1,2,3中的2,将2带入结果中即可得出最终结果.
    【详解】
    (1) 由1-3(x-1)<8-x得:
    1-3x+3<8-x,
    1+3-8<-x+3x,
    ﹣4<2x,
    则x>﹣2.
    由+3≥x+1得:
    x-3+6≥2x+2
    ﹣3+6-2≥2x-x
    则x≤1
    所以不等式组的解集为﹣2<x≤1.
    (2)÷-
    =× -
    =× -
    =+
    =+
    =2
    要想使分式有意义,必须使分式的分母不能为0,
    除法中除数不能为0,
    即+3≠0、()≠0、a-3≠0、a-1≠0,
    故a≠0、-3、1、3.
    所以a只能取0、1、2、3中的2,
    将2代入化简结果2a得:
    2a=2×2,
    =4.
    本题主要考查解不等式组以及分式的化简求值.易错点在于第(2)问的化简求值,往往忽略了分式有意义的条件.
    16、280米
    【解析】
    设原计划每小时抢修道路x米,根据一共用10小时完成任务列出方程进行求解即可.
    【详解】
    设原计划每小时抢修道路x米,
    根据题意得:+=10,
    解得:x=280,
    经检验:x=280是原方程的解,
    答:原计划每小时抢修道路280米.
    本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.注意分式方程要检验.
    17、(1)图见解析,;(2);(3)图见解析,(2,3).
    【解析】
    (1)如图,画出△ABC绕原点O逆时针旋转90°的△A BC;
    (2)如图,根据弧长公式 ,计算点B运动的路径长;画出△ABC后的△ABC;
    (3)如图,画出△ABC关于原点O对称的△ABC.
    【详解】
    (1)如图所示:点B1的坐标为(3,−4);
    故答案为:(3,−4)
    (2)由勾股定理得:OB==5,

    故答案为: ;
    (3)如图所示,点C2的坐标为(2,3)
    故答案为:(2, 3).
    此题考查作图-旋转变换,掌握作图法则是解题关键
    18、,1
    【解析】
    先提取公因式,再利用完全平方公式进行因式分解,将,代入求解即可.
    【详解】
    解:


    ∵其中,
    ∴原式

    =1.
    本题考查了因式分解的问题,掌握完全平方公式是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、y=-x+1
    【解析】
    根据矩形的性质及B点坐标可求C点坐标,设直线L的解析式为y=kx+b,根据“两点法”列方程组,可确定直线L的解析式.
    【详解】
    ∵矩形ABCD中,B(3,1),
    ∴C(0,1),设直线L的解析式为y=kx+b,
    则,解得
    ∴直线L的解析式为:y=- x+1.
    故答案为:y=-x+1.
    本题考查了矩形的性质,图形与坐标,以及用待定系数法确定函数的解析式,待定系数法是常用的一种解题方法.
    20、(3,0).
    【解析】
    试题分析:把y=0代入y=2x-6得x=3,所以一次函数y=2x-6的图像与x轴的交点坐标为(3,0).
    考点:一次函数的图像与x轴的交点坐标.
    21、22.5
    【解析】
    ∵ABCD是正方形,
    ∴∠DBC=∠BCA=45°,
    ∵BP=BC,
    ∴∠BCP=∠BPC=(180°-45°)=67.5°,
    ∴∠ACP度数是67.5°-45°=22.5°
    22、3;
    【解析】
    根据矩形是中心对称图形寻找思路:△OBF≌△ODE,图中阴影部分的面积就是△ADC的面积.
    【详解】
    根据矩形的性质得△OBF≌△ODE,
    属于图中阴影部分的面积就是△ADC的面积.
    S△ADC=CD×AD=×2×3=3.
    故图中阴影部分的面积是3.
    本题考查全等三角形的判定与性质、矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质.
    23、<
    【解析】
    利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.
    【详解】
    解:由折线统计图得乙运动员的成绩波动较大,
    所以S甲2<S乙2
    故选<
    本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.
    二、解答题(本大题共3个小题,共30分)
    24、(1)过A,B两点的直线解析式为y=2x+3;
    (2)△ABP的面积为或.
    【解析】
    (1)设直线l的解析式为y=ax+b,把A、B的坐标代入求出即可;
    (2)分为两种情况:①当P在x轴的负半轴上时,②当P在x轴的正半轴上时,求出AP,再根据三角形面积公式求出即可.
    【详解】
    解:(1)设过A,B两点的直线解析式为y=ax+b(a≠0),
    则根据题意,得,
    解得:,
    则过A,B两点的直线解析式为y=2x+3;
    (2)设P点坐标为(x,0),依题意得x=±3,
    ∴P点坐标分别为P1(3,0),P2(﹣3,0),
    =,
    =,
    故△ABP的面积为或.
    本题考查了用待定系数法求一次函数的解析式,三角形的面积,解二元一次方程组等知识点的应用,关键是能求出符合条件的两种情况.
    25、(1) 见解析;(2)15,15;(3)人均年收入为15.1万元.
    【解析】
    (1)从两个统计图中得到C组15万元的有20人,占调查人数的40%,可求出调查人数,进而得到D组人数,补全条形统计图,
    (2)根据中位数、众数的意义和求法分别求出即可,排序后求出第25、26位的两个数的平均数即为中位数,出现次数最多的数是众数,
    (3)利用平均数的计算公式进行计算.
    【详解】
    解:(1)20÷40%=50人,50-3-11-20-2=14人,补全条形统计图如图所示:
    (2)员工年收入在15万元出现次数最多是20次,因此众数是15万,
    调查50人的收入从小到大排列后处在第25、26位的数据都是15万,因此中位数是15万,
    (3)=15.1万元,
    答:该公司员工人均年收入约为15.1万元.
    本题考查条形统计图、扇形统计图的制作方法、平均数、中位数、众数的意义,理解统计图中各个数据之间的关系是解决问题的关键.
    26、(1)50人(2)20,20(3)34800
    【解析】
    【分析】(1)根据捐款20元和25与的学生一共是28人及这两组所占的总人数比例可求出总人数;
    (2)众数即人数最多的捐款数,中位数要找到从小到大排列位于中间的数据;
    (3)首先计算平均捐款数,再进一步估计总体平均捐款数,从而计算全校捐款数.
    【详解】(1)(1)28÷=50(名),
    所以一共调查了50名学生;
    (2)设捐款20元和25元的学生分别有8x人和6x人.
    则有:8x+6x=28,
    ∴x=2
    5个组的人数分别为4,8,10,16,12,
    ∴这组数据的中位数是20元,众数是20元;
    (3)平均每个学生捐款的数量是:
    (5×4+10×8+15×10+20×16+25×12)=17.4(元),
    17.4×2000=34800(元),
    所以全校学生大约捐款34800元.
    【点睛】本题考查了统计图、用样本估计总体、中位数、众数等,考查了利用频数分布直方图以及利用频数分布直方图获取信息的能力,解答本题的关键是理解众数、中位数的概念,能够根据部分所占的百分比计算总体,能够用样本平均数估计总体平均数.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024年吉林省农安县杨树林中学数学九上开学调研模拟试题【含答案】:

    这是一份2024年吉林省农安县杨树林中学数学九上开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    吉林省长春市解放大路中学2023-2024学年九上数学期末经典模拟试题含答案:

    这是一份吉林省长春市解放大路中学2023-2024学年九上数学期末经典模拟试题含答案,共7页。试卷主要包含了下列事件中,是随机事件的是,sin45°的值等于,一元二次方程配方为,在中,,若已知,则等内容,欢迎下载使用。

    2023-2024学年吉林省长春市解放大路中学九上数学期末教学质量检测模拟试题含答案:

    这是一份2023-2024学年吉林省长春市解放大路中学九上数学期末教学质量检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列方程中,没有实数根的是,方程的解的个数为,两个相似三角形,其面积比为16等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map