年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年黑龙江省大庆市杜尔伯特县数学九上开学经典模拟试题【含答案】

    2024年黑龙江省大庆市杜尔伯特县数学九上开学经典模拟试题【含答案】第1页
    2024年黑龙江省大庆市杜尔伯特县数学九上开学经典模拟试题【含答案】第2页
    2024年黑龙江省大庆市杜尔伯特县数学九上开学经典模拟试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年黑龙江省大庆市杜尔伯特县数学九上开学经典模拟试题【含答案】

    展开

    这是一份2024年黑龙江省大庆市杜尔伯特县数学九上开学经典模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,菱形中,于,交于F,于,若的周长为4,则菱形的面积为( ).
    A.B.C.16D.
    2、(4分)如图,在平面直角坐标系xOy中,点A、C、F在坐标轴上,E是OA的中点,四边形AOCB是矩形,四边形BDEF是正方形,若点C的坐标为(3,0), 则点D的坐标为( )
    A.(1, 3)B.(1,)C.(1,)D.(,)
    3、(4分)一次函数的图象如图所示,当时,x的取值范围是
    A.B.C.D.
    4、(4分)药品研究所开发一种抗菌新药,经过多年的动物实验之后首次用于临床人体试验,测得成人服药后血液中药物浓度(微克/毫升)与服药后的时间(时)之间的函数关系如图所示,则当,的取值范围是( )
    A.B.C.D.
    5、(4分)平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD是( )
    A.矩形B.菱形C.正方形D.平行四边形
    6、(4分)在平面直角坐标系中,点(-1,2)在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    7、(4分)不等式组中的两个不等式的解集在数轴上表示为( )
    A.B.
    C.D.
    8、(4分)如图,△AOB是等边三角形,B(2,0),将△AOB绕O点逆时针方向旋转90°到△A′OB′位置,则A′坐标是( )
    A.(﹣1,)B.(﹣,1)C.(,﹣1)D.(1,﹣)
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为_____.
    10、(4分)如图,E为△ABC中AB边的中点,EF∥AC交BC于点F,若EF=3cm,则AC=____________.
    11、(4分)已知,则= ___________
    12、(4分)关于x的一元二次方程x2﹣2x+k﹣1=0没有实数根,则k的取值范围是_____.
    13、(4分)在▱ABCD中,对角线AC,BD相交于点O.请你添加一个条件,使得四边形ABCD成为菱形,这个条件可以是_____.(写出一种情况即可)
    三、解答题(本大题共5个小题,共48分)
    14、(12分)解方程:
    (1).
    (2).
    15、(8分)先化简(1-)÷,然后a在-2,0,2,3中选择一个合适的数代入并求值.
    16、(8分)解不等式组,并把解集表示在下面的数轴上.
    17、(10分)解下列方程:
    (1)=.
    (2)=1-.
    18、(10分)如图,在△ABC中,.请用尺规在AC上作点P,使点P到A、B的距离相等保留作图痕迹,不写作法和证明
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知菱形ABCD的周长为16,面积为,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为______.
    20、(4分)如图,在中,连结.且,过点作于点,过点作于点,且,在的延长线上取一点,满足,则_______.
    21、(4分)菱形的边长为5,一条对角线长为8,则菱形的面积为____.
    22、(4分)菱形的两条对角线相交于,若,,则菱形的周长是___.
    23、(4分)如图,在中,已知,则_______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)近年来,随着我国科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国创造”,高铁事业是“中国创造”的典范,甲、乙两个城市的火车站相距1280千米,加开高铁后,从甲站到乙站的运行时间缩短了11个小时,大大方便了人们出行,已知高铁行驶速度是原来火车速度的3.2倍,求高铁的行驶速度.
    25、(10分)如图,、分别为的边、的中点,,延长至点,使得,连接、、.若时,求四边形的周长.
    26、(12分)已知关于 x 的一元二次方程 x2﹣2(k﹣1)x+k(k+2)=0 有两个不相等的实数根.
    (1)求 k 的取值范围;
    (2)写出一个满足条件的 k 的值,并求此时方程的根.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    由菱形的性质得到∠BCD=45°,推出△BFG与△BEC是等腰直角三角形,根据全等三角形的性质得到FG=FE,CG=CE,设BG=FG=EF=x,得到BF=x,根据△BFG的周长为4,列方程x+x+x=4,即可得到结论.
    【详解】
    ∵菱形ABCD中,∠D=135°,
    ∴∠BCD=45°,
    ∵BE⊥CD于E,FG⊥BC于G,
    ∴△BFG与△BEC是等腰直角三角形,
    ∵∠GCF=∠ECF,∠CGF=∠CEF=90°,
    CF=CF,
    ∴△CGF≌△CEF(AAS),
    ∴FG=FE,CG=CE,
    设BG=FG=EF=x,
    ∴BF=x,
    ∵△BFG的周长为4,
    ∴x+x+x=4,
    ∴x=4-2,
    ∴BE=2,
    ∴BC=BE=4,
    ∴菱形ABCD的面积=4×2=8,
    故选:B.
    考查了菱形的性质,等腰三角形的性质,求FG的长是本题的关键.
    2、A
    【解析】
    过D作DH⊥y轴于H,根据矩形和正方形的性质得到AO=BC,DE=EF=BF,∠AOC=∠DEF=∠BFE=∠BCF=90°,根据全等三角形的性质即可得到结论.
    【详解】
    过D作DH⊥y轴于H,
    ∵四边形AOCB是矩形,四边形BDEF是正方形,
    ∴AO=BC,DE=EF=BF,
    ∠AOC=∠DEF=∠BFE=∠BCF=90°,
    ∴∠OEF+∠EFO=∠BFC+∠EFO=90°,
    ∴∠OEF=∠BFO,
    ∴△EOF≌△FCB(ASA),
    ∴BC=OF,OE=CF,
    ∴AO=OF,
    ∵E是OA的中点,
    ∴OE=OA=OF=CF,
    ∵点C的坐标为(3,0),
    ∴OC=3,
    ∴OF=OA=2,AE=OE=CF=1,
    同理△DHE≌△EOF(ASA),
    ∴DH=OE=1,HE=OF=2,
    ∴OH=2,
    ∴点D的坐标为(1,3),
    故选A.
    本题考查了正方形的性质,坐标与图形性质,矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.
    3、A
    【解析】
    解:由图像可知, 当时,x的取值范围是.
    故选A.
    4、C
    【解析】
    根据图像分别求出和时的函数表达式,再求出当x=1,x=3,x=6时的y值,从而确定y的范围.
    【详解】
    解:设当时,设,

    解得:,

    当时,设,

    解得:,

    当时,,当时,有最大值8,当时,的值是,
    ∴当时,的取值范围是.
    故选:.
    本题主要考查了求一次函数表达式和函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
    5、B
    【解析】
    在平面直角坐标系中,根据点的坐标画出四边形ABCD,再根据对角线互相垂直的平行四边形是菱形得出四边形ABCD是菱形.
    【详解】
    解:如图所示:
    ∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),
    ∴OA=OC,OB=OD,
    ∴四边形ABCD为平行四边形,
    ∵BD⊥AC,
    ∴四边形ABCD为菱形,
    故选B.
    本题考查了菱形的判定,坐标与图形性质,掌握菱形的判定方法利用数形结合是解题的关键.
    6、B
    【解析】
    根据各象限内点的坐标特征解答即可.
    【详解】
    ∵点(-1,2)的横坐标为负数,纵坐标为正数,
    ∴点(-1,2)在第二象限.
    故选B.
    本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    7、C
    【解析】
    分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.
    【详解】
    不等式组,
    解得:,
    解得:,
    ∴不等式组的解集为:,
    故选:C.
    本题考查了不等式组的解法和在数轴上表示不等式组的解集.需要注意的是:如果是表示大于或小于号的点要用空心圆圈,如果是表示大于等于或小于等于号的点要用实心圆点.
    8、B
    【解析】
    过点A′作A′C⊥x轴于C,根据点B的坐标求出等边三角形的边长,再求出∠A′OC=30 ,然后求出OC、A′C,再根据点A′在第二象限写出点A′的坐标即可.
    【详解】
    如图,过点A′作A′C⊥x轴于C,
    ∵B(2,0),
    ∴等边△AOB的边长为2,
    又∵∠A′OC=90 −60 =30 ,
    ∴OC=2×cs30 =2×=,A′C=2×=1,
    ∵点A′在第二象限,
    ∴点A′(﹣,1).
    故选:B.
    本题考查了坐标与图形变化−旋转,等边三角形的性质,根据旋转的性质求出∠A′OC=30,然后解直角三角形求出点A′的横坐标与纵坐标的长度是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、45°
    【解析】
    如图,连接OA,因OA=OC,可得∠ACO=∠OAC=45°,根据三角形的内角和公式可得∠AOC=90°,再由圆周角定理可得∠B=45°.
    10、1cm
    【解析】
    根据平行线分线段成比例定理,得到BF=FC,根据三角形中位线定理求出AC的长.
    【详解】
    解:∵E为△ABC中AB边的中点,
    ∴BE=EA.
    ∵EF∥BC,
    ∴=,
    ∴BF=FC,则EF为△ABC的中位线,
    ∴AC=2EF=1.
    故答案为1.
    本题考查的是三角形中位线定理的运用和平行线分线段成比例定理的运用,掌握三角形的中位线平行于第三边且等于第三边的一半是解题的关键.
    11、-1
    【解析】
    将原式利用提公因式法进行因式分解,再将代入即可.
    【详解】
    解:∵x+y=-2,xy=3,
    ∴原式=xy(x+y)=3×(-2)= -1.
    此题考查了因式分解和整式的代入求值法,熟练掌握因式分解和整式的运算法则是解本题的关键.
    12、k>1
    【解析】
    ∵关于x的一元二次方程x1﹣1x+k﹣1=0没有实数根,
    ∴△<0,即(﹣1)1﹣4(k﹣1)<0,
    解得k>1,
    故答案为k>1.
    13、AC⊥BD(答案不唯一)
    【解析】
    依据菱形的判定定理进行判断即可.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴当AC⊥BD时,四边形ABCD为菱形.
    故答案为AC⊥BD(答案不唯一).
    本题主要考查菱形的判定,平行四边形的性质,熟悉掌握菱形判定条件是关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1),;(2),
    【解析】
    (1)先移项,然后用因式分解法求解即可;
    (2)用求根公式法求解即可.
    【详解】
    解:(1),

    ,.
    (2),,,,

    因此原方程的根为,.
    本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.
    15、;当a=0时,原式.
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后从-2,0,2,3中选择一个使得原分式有意义值代入化简后的式子即可解答本题.
    【详解】
    解:(1-)÷
    =
    =
    =,
    当a=0时,原式=.
    本题考查分式的化简求值,解答本题的关键是掌握分式四则运算的法则和运算顺序.
    16、,数轴见解析
    【解析】
    分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
    【详解】
    解:解不等式x﹣2(x﹣3)≥5,得:,
    解不等式+1,得:,
    则不等式组的解集为,
    将不等式组的解集表示在数轴上如下:
    本题主要考查解不等式组,掌握解不等式组的方法及用数轴表示不等式解集的方法是解题的关键.
    17、(1)无解;(2)x=-1.
    【解析】
    (1)先去分母,再解一元一次方程,最后检验即可得答案;(2)方程两边同时乘以(2x-1)可得一元一次方程,解方程即可求出x的值,再检验即可得答案.
    【详解】
    (1)=
    两边同时乘以(x-1)得:3x+2=5,
    解得:x=1,
    检验:当x=1时,x-1=0,
    ∴x=1不是原方程的解,
    ∴原方程无解.
    (2)=1-
    两边同时乘以(2x-1)得:x=2x-1+2,
    解得:x=-1.
    检验:当x=-1时,2x-1=-3≠0,
    ∴x=-1是原方程的解.
    本题考查解分式方程,解分式方程的基本思路是把分式方程转化成整式方程,其具体做法是“去分母”,即方程两边同时乘以最简公分母.熟练掌握分式方程的解法是解题关键.
    18、见详解
    【解析】
    根据线段垂直平分线性质作图求解即可.
    【详解】
    解:如图,作AB的垂直平分线,交AC于P.
    则PA=PB,点P为所求做的点.
    本题考查尺规作图.线段垂直平分线的性质:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上 .作线段的垂直平分线是解决本题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、.
    【解析】
    解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.首先证明E′与E重合,
    ∵A、C关于BD对称,
    ∴当P与P′重合时,PA′+P′E的值最小,
    ∵菱形ABCD的周长为16,面积为8,
    ∴AB=BC=4,AB·CE′=8,
    ∴CE′=2,由此求出CE的长=2.
    故答案为2.
    考点:1、轴对称﹣最短问题,2、菱形的性质
    20、
    【解析】
    根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到DN=AM,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AP.
    【详解】
    解:∵BD=CD,AB=CD,
    ∴BD=BA,
    又∵AM⊥BD,DN⊥AB,
    ∴DN=AM= ,
    又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,
    ∴∠P=∠PAM,
    ∴△APM是等腰直角三角形,
    ∴AP=AM=1,
    故答案为1.
    本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.
    21、1
    【解析】
    菱形的对角线互相垂直平分,四边相等,可求出另一条对角线的长,再根据菱形的面积等于对角线乘积的一半求解即可.
    【详解】
    ∵菱形的边长为5,一条对角线长为8
    ∴另一条对角线的长
    ∴菱形的面积
    故答案为:1.
    本题考查了菱形的面积问题,掌握菱形的性质、菱形的面积公式是解题的关键.
    22、
    【解析】
    根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.
    【详解】
    ∵菱形ABCD的两条对角线相交于O,AC=8,BD=6,由菱形对角线互相垂直平分,
    ∴BO=OD=3,AO=OC=4,
    ∴AB==5,
    故菱形的周长为1,
    故答案为:1.
    本题考查了勾股定理在直角三角形中的运用,以及菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.
    23、
    【解析】
    根据题意,先求出AD的长度,然后相似三角形的性质,得到,即可求出DE.
    【详解】
    解:∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴;
    故答案为:.
    本题考查了相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的性质进行解题.
    二、解答题(本大题共3个小题,共30分)
    24、高铁的行驶速度为1千米/时.
    【解析】
    设原来火车的速度为x千米/时,则高铁的速度为3.2x千米/时,根据时间=路程÷速度结合高铁比原来的火车省11小时,即可得出关于x的分式方程,解之即可得出结论.
    【详解】
    设原来火车的速度为x千米/时,则高铁的速度为3.2x千米/时,
    根据题意得:,
    解得:x=80,
    经检验,x=80是原分式方程的解,
    ∴3.2x=3.2×80=1.
    答:高铁的行驶速度为1千米/时.
    本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    25、四边形的周长为8.
    【解析】
    根据、分别为的边、的中点,且证明四边形是平行四边形,再证明平行四边形是菱形即可求解.
    【详解】
    解:∵、分别为的边、的中点,
    ∴.
    又∵,
    ∴四边形是平行四边形.
    又∵,
    ∴平行四边形是菱形.

    ∴,
    ∴四边形的周长为8.
    本题考查了平行四边形及菱形的判定和性质,证明四边形是菱形是解本题的关键.
    26、方程的根
    【解析】
    (1)根据方程的系数结合根的判别式,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;
    (1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.
    【详解】
    (1)∵关于x的一元二次方程x1﹣1(k﹣a)x+k(k+1)=0有两个不相等的实数根,
    ∴△=[﹣1(k﹣1)]1﹣4k(k﹣1)=﹣16k+4>0,
    解得:k< .
    (1)当k=0时,原方程为x1+1x=x(x+1)=0,
    解得:x1=0,x1=﹣1.
    ∴当k=0时,方程的根为0和﹣1.
    本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.
    题号





    总分
    得分
    批阅人

    相关试卷

    2024-2025学年湖南省新邵县数学九上开学经典模拟试题【含答案】:

    这是一份2024-2025学年湖南省新邵县数学九上开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年黑龙江省大庆市林甸县九上数学开学考试试题【含答案】:

    这是一份2024-2025学年黑龙江省大庆市林甸县九上数学开学考试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年福建省永春县九上数学开学经典模拟试题【含答案】:

    这是一份2024-2025学年福建省永春县九上数学开学经典模拟试题【含答案】,共21页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map