2024年广西贵港市覃塘区数学九上开学调研试题【含答案】
展开
这是一份2024年广西贵港市覃塘区数学九上开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知关于的一元二次方程没有实数根,则实数的取值范围是( )
A.B.C.D.
2、(4分)如图,等腰梯形 ABCD 的对角线 AC、BD 相交于 O,则图中的全等三 角形有( )
A.1 对B.2 对C.3 对D.4 对
3、(4分)如图,下列判断中正确的是( )
A.如果∠3+∠2=180°,那么AB∥CDB.如果∠1+∠3=180°,那么AB∥CD
C.如果∠2=∠4,那么AB∥CDD.如果∠1=∠5,那么AB∥CD
4、(4分)某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是
A.50(1+x2)=196B.50+50(1+x2)=196
C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=196
5、(4分)如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是( )
A.12B.14C.16D.18
6、(4分)已知:在中,,求证:若用反证法来证明这个结论,可以假设
A.B.C.D.
7、(4分)在同一平面直角坐标系中,函数y=2x﹣a与y=(a≠0)的图象可能是( )
A.B.
C.D.
8、(4分)一个多边形的内角和是外角和的4倍,则这个多边形的边数是( )
A.8B.9C.10D.11
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分解因式:1﹣x2= .
10、(4分)如图所示,在中,,在同一平面内,将绕点逆时针旋转到△的位置,使,则___.
11、(4分)若一直角三角形的两边长为4、5,则第三边的长为________ .
12、(4分)如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,DE是AB边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为________.
13、(4分)如图,正比例函数y=ax的图象与反比例函数y=的图象相交于点A,B,若点A的坐标为(-2,3),则点B的坐标为_________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知:直线y=与x轴、y轴分别相交于点A和点B,点C在线段AO上.将△CBO沿BC折叠后,点O恰好落在AB边上点D处.
(1)直接写出点A、点B的坐标:
(2)求AC的长;
(3)点P为平面内一动点,且满足以A、B、C、P为顶点的四边形为平行四边形,请直接回答:
①符合要求的P点有几个?
②写出一个符合要求的P点坐标.
15、(8分)如图,在平行四边形ABCD中,E、F分别是BC、AD上的点,且AE∥CF,求证:AE=CF
16、(8分)如图,、是的对角线上的两点,且,,连接、、、.
(1)求证:四边形为平行四边形;
(2)若,,求的长.
17、(10分)世界上大部分国家都使用摄氏温度(℃),但美国,英国等国家的天气预报都使用华氏温度(℉),两种计量之间有如下对应:
已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.
求该一次函数的解析式;
当华氏温度14℉时,求其所对应的摄氏温度.
18、(10分)在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC沿着直线DE折叠,顶点B的对应点是B′.
(1)如图(1),如果点B′和顶点A重合,求CE的长;
(2)如图(2),如果点B′和落在AC的中点上,求CE的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)菱形两对角线长分别为24和10,则这个菱形的面积是________,菱形的高为_____.
20、(4分)小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入________小球时有水溢出.
21、(4分)一种病毒长度约为0.0000056mm,数据0.0000056用科学记数法可表示为______.
22、(4分)菱形的边长为5,一条对角线长为8,则菱形的面积为____.
23、(4分)二次根式中,x的取值范围是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)折叠矩形ABCD,使点D落在BC边上的点F处.
(1)求证:△ABF∽△FCE;
(2)若DC=8,CF=4,求矩形ABCD的面积S.
25、(10分)如图1,边长为的大正方形中有一个边长为的小正方形(),图2是由图1中阴影部分拼成的一个长方形.
(1)观察图1、图2,当用不同的方法表示图形中阴影部分的面积时,可以获得一个因式分解公式,则这个公式是_______;
(2)如果大正方形的边长比小正方形的边长多3,它们的面积相差57,试利用(1)中的公式,求,的值.
26、(12分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0,﹣1).
(1)写出A、B两点的坐标
(1)经过平移,△ABC的顶点A移到了点A1,画出平移后的△A1B1C1;若△ABC内有一点P(a,b),直接写出按(1)的平移变换后得到对应点P1的坐标.
(3)画出△ABC绕点C旋转180°后得到的△A1B1C1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据判别式的意义得到△=(-2)2-4m<0,然后解关于m的不等式即可.
【详解】
根据题意得△=(-2)2-4m<0,
解得m>1.
故选A.
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
2、C
【解析】
由等腰梯形的性质可知,AB=CD,AC=BD,OA=OD,OB=OC,利用这些条件,就可以找图中的全等三角形了,有三对.
【详解】
∵四边形ABCD是等腰梯形,
∴AB=CD,AC=BD,OA=OD,OB=OC,AD∥CB,
∴△AOB≌△DOC,△ABD≌△ACD,△ABC≌△DCB.
故选C.
本题考查等腰梯形的性质, 全等三角形的判定.解本题时应先观察图,尽可能多的先找出图中的全等三角形,然后根据已知条件进行证明.
3、D
【解析】
分析:直接利用平行线的判定方法分别判断得出答案.
详解:A、如果∠3+∠2=180°,无法得出AB∥CD,故此选项错误;
B、如果∠1+∠3=180°,无法得出AB∥CD,故此选项错误;
C、如果∠2=∠4,无法得出AB∥CD,故此选项错误;
D、如果∠1=∠5,那么AB∥CD,正确.
故选D.
点睛:此题主要考查了平行线的判定,正确掌握相关判定方法是解题关键.
4、C
【解析】
试题分析:一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量:八、九月份的产量分别为50(1+x)、50(1+x)2,从而根据题意得出方程:
50+50(1+x)+50(1+x)2=1.
故选C.
5、B
【解析】
延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.
【详解】
延长BN交AC于D,
在△ANB和△AND中,
,
∴△ANB≌△AND,
∴AD=AB=8,BN=ND,
∵M是△ABC的边BC的中点,
∴DC=2MN=6,
∴AC=AD+CD=14,
故选B.
本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.
6、C
【解析】
反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.
【详解】
已知:在中,,求证:若用反证法来证明这个结论,可以假设,由“等角对等边”可得AB=AC,这与已知矛盾,所以
故选C
本题考核知识点:反证法. 解题关键点:理解反证法的一般步骤.
7、D
【解析】
根据一次函数的图像得a值,根据a值求判断反比例函数图像.
【详解】
解:A、由一次函数的图象,得k<0,与k=2矛盾,故A不符合题意;
B、由一次函数的图象,得k<0,与k=2矛盾,故B不符合题意;
C、由一次函数的图象,得a<0,当a<0时反比例函数的图象位于二四象限,故C不符合题意;
D、由一次函数的图象,得a>0,当a>0时反比例函数的图象位于一三象限,故D符合题意,
故选:D.
本题考查的是反比例函数和一次函数,熟练掌握二者的图像是解题的关键.
8、C
【解析】
利用多边形的内角和公式及外角和定理列方程即可解决问题.
【详解】
设这个多边形的边数是n,
则有(n-2)×180°=360°×4,
所有n=1.
故选C.
熟悉多边形的内角和公式:n边形的内角和是(n-2)×180°;多边形的外角和是360度.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(1+x)(1﹣x).
【解析】
试题分析:直接应用平方差公式即可:1﹣x2=(1+x)(1﹣x).
10、40°
【解析】
由旋转性质可知,,从而可得出为等腰三角形,且和已知,得出的度数.则可得出答案.
【详解】
解:绕点逆时针旋转到△的位置
本题考查了旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解题的关键是抓住旋转变换过程中不变量,判断出是等腰三角形.
11、 或1
【解析】
解:当4和5都是直角边时,则第三边是 ;
当5是斜边时,则第三边是 ;
故答案是:和1.
12、1
【解析】
由DE是AB边的垂直平分线,可得AE=BE,又由在直角△ABC中,∠BAC=90°,AB=8,AC=6,利用勾股定理即可求得BC的长,继而由△ACE的周长=AC+BC,求得答案.
【详解】
解:∵DE是AB边的垂直平分线,
∴AE=BE,
∵在直角△ABC中,∠BAC=90°,AB=8,AC=6,
∴BC==10,
∴△ACE的周长为:AC+AE+CE=AC+BE+CE=AC+BC=6+10=1.
故答案为:1.
本题考查,线段垂直平分线的性质以及勾股定理.此题难度不大,注意掌握数形结合思想与转化思想的应用.
13、(2,﹣3)
【解析】
试题分析:反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.
解:根据题意,知
点A与B关于原点对称,
∵点A的坐标是(﹣2,3),
∴B点的坐标为(2,﹣3).
故答案是:(2,﹣3).
点评:本题考查了反比例函数图象的中心对称性,关于原点对称的两点的横、纵坐标分别互为相反数.
三、解答题(本大题共5个小题,共48分)
14、(1)B(0,6),A(﹣8,0).(2)1;(3)①3个;②P1(﹣1,6),P2(﹣11,﹣6),P3(1,6).
【解析】
(1)利用待定系数法解决问题即可.
(2)由翻折不变性可知,OC=CD,OB=BD=6,∠CDB=∠BOC=90°,推出AD=AB-BD=4,设CD=OC=x,在Rt△ADC中,根据AD2+CD2=AC2,构建方程即可解决问题.
(3)①根据平行四边形的定义画出图形即可判断.
②利用平行四边形的性质求解即可解决问题.
【详解】
(1)对于直线y=x+6,令x=0,得到y=6,
∴B(0,6),
令y=0,得到x=﹣8,
∴A(﹣8,0).
(2)∵A(﹣8,0).B(0,6),
∴OA=8,OB=6,∵∠AOB=90°,
∴AB===10,
由翻折不变性可知,OC=CD,OB=BD=6,∠CDB=∠BOC=90°,
∴AD=AB﹣BD=4,设CD=OC=x,
在Rt△ADC中,∵∠ADC=90°,
∴AD2+CD2=AC2,
∴42+x2=(8﹣x)2,
解得x=3,
∴OC=3,AC=OA﹣OC=8﹣3=1.
(3)①符合条件的点P有3个如图所示.
②∵A(﹣8,0),C(﹣3,0),B(0,6),
可得P1(﹣1,6),P2(﹣11,﹣6),P3(1,6).
本题属于一次函数综合题,考查了待定系数法,解直角三角形,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题
15、见解析
【解析】
根据一组对边平行且相等的四边形是平行四边形,证明AF=EC,AF∥EC即可.
【详解】
证明:∵四边形ABCD是平行四边形,
且E、F分别是BC、AD上的点,
∴AF=EC,
又∵四边形ABCD是平行四边形,
∴AD∥BC,即AF∥EC.
∴四边形AFCE是平行四边形,
∴AE=CF.
本题考查了平行四边形的判断方法,平行四边形可以从边、角、对角线三方面进行判定,在选择判断方法时,要根据题目现有的条件,选择合理的判断方法.
16、(1)证明见解析 (2)
【解析】
(1)根据平行四边形的性质,证明,即可解答.
(2)由(1)得到,,再利用勾股定理即可解答.
【详解】
(1)证明:
∵,,
∴.
∴.
在中,,,
∴.
∴.
∴.
∴四边形是平行四边形.
(2)∵四边形是平行四边形,
∴,.
在中,
.
∴.
此题考查平行四边形的判定与性质,勾股定理,解题关键在于判定三角形全等.
17、(1)y=1.8x+1;(2)华氏温度14℉所对应的摄氏温度是-2℃.
【解析】
分析:(1)设y=kx+b(k≠0),利用图中的两对数,用待定系数法求解即可;
(2)把 y=14代入(1)中求得的函数关系式求出x的值即可.
详解:(1)设一次函数表达式为y=kx+b(k≠0).
由题意,得,解得.
∴一次函数的表达式为y=1.8x+1.
(2)当y=14时,代入得14=1.8x+1,解得x=-2.
∴华氏温度14℉所对应的摄氏温度是-2℃.
点睛:本题考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键. 利用待定系数法求函数解析式的一般步骤:①先设出函数解析式的一般形式;②将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.
18、 (1); (2)
【解析】
(1)如图(1),设CE=x,则BE=8﹣x;根据勾股定理列出关于x的方程,解方程即可解决问题.
(2)如图(2),首先求出CB′=3;类比(1)中的解法,设出未知数,列出方程即可解决问题.
【详解】
(1)如图(1),设CE=x,则BE=8﹣x;
由题意得:AE=BE=8﹣x,
由勾股定理得:x2+62=(8﹣x)2,
解得:x=,
即CE的长为:.
(2)如图(2),
∵点B′落在AC的中点,
∴CB′=AC=3;
设CE=x,类比(1)中的解法,可列出方程:x2+32=(8﹣x)2
解得:x=.
即CE的长为:.
该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系;借助勾股定理等几何知识点来分析、判断、推理或解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、110cm1,cm.
【解析】
试题分析:已知两对角线长分别为14cm和10cm,利用勾股定理可得到菱形的边长=13cm,根据菱形面积==两条对角线的乘积的一半可得菱形面积=×14×10=110cm1.又因菱形面积=底×高,即高=菱形面积÷底=cm.
考点:菱形的性质;勾股定理.
20、10
【解析】
(36-20)÷3=2(cm).
设放入x小球有水溢出,由题意得
2x+30>49, ∴x>9.5, ∴放入10小球有水溢出.
21、5.1×10-1
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.0000051=5.1×10-1.
故答案为:5.1×10-1.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
22、1
【解析】
菱形的对角线互相垂直平分,四边相等,可求出另一条对角线的长,再根据菱形的面积等于对角线乘积的一半求解即可.
【详解】
∵菱形的边长为5,一条对角线长为8
∴另一条对角线的长
∴菱形的面积
故答案为:1.
本题考查了菱形的面积问题,掌握菱形的性质、菱形的面积公式是解题的关键.
23、
【解析】
根据二次根式有意义的条件进行求解即可得.
【详解】
根据题意,得
,
解得,,
故答案为:.
本题考查了二次根式有意义的条件,熟练掌握“式子叫二次根式、二次根式中的被开方数必须是非负数”是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)证明见解析;(2)4.
【解析】
(1)根据矩形性质和折叠性质证△ABF∽△FCE;(2)在Rt△EFC中,EF2=CE2+CF2,求DE=EF,根据相似三角形性质,求AD=AF=3,S=AD•CD.
【详解】
(1)∵矩形ABCD中,
∠B=∠C=∠D=90°.
∴∠BAF+∠AFB=90°.
由折叠性质,得∠AFE=∠D=90°.
∴∠AFB+∠EFC=90°.
∴∠BAF=∠EFC.
∴△ABF∽△FCE;
(2)由折叠性质,得AF=AD,DE=EF.
设DE=EF=x,则CE=CD﹣DE=8﹣x,
在Rt△EFC中,EF2=CE2+CF2,
∴x2=(8﹣x)2+1.
解得x=2.
由(1)得△ABF∽△FCE,
∴AD=AF=3.
∴S=AD•CD=3×8=4.
考核知识点:矩形折叠问题和相似三角形判定和性质.理解题意熟记性质是关键.
25、(1);(2)a=11,b=1
【解析】
(1)根据两个图形的面积即可列出等式;
(2)根据题意得到,由面积相差57得到,解a与b组成的方程组求解即可.
【详解】
解:(1)图1阴影面积=,图2的阴影面积=(a+b)(a-b),
∴,
故答案为:;
(2)由题意可得:.
∵.
∴.
∴解得
∴,的值分别是11,1.
此题考查完全平方公式与几何图形的关系,二元一次方程组的实际应用.
26、(1)A(﹣1,1),B(﹣3,1);(1)P1(a+4,b+1);(3)见解析.
【解析】
(1)根据直角坐标系写出A、B两点的坐标即可.
(1)首先确定点A的平移路径,再将B和C按照点A的平移路线平移,再将平移点连接起来即可.
(3)首先根据点C将A点和B点旋转 ,再将旋转后的点连接起来即可.
【详解】
解:(1)根据图形得:A(﹣1,1),B(﹣3,1);
(1)如图所示:△A1B1C1,即为所求;
根据题意得:P1(a+4,b+1);
(3)如图所示:△A1B1C1,即为所求.
本题主要考查直角坐标系中图形的平移和旋转,关键在于根据点的平移和旋转来确定图形的平移和旋转.
题号
一
二
三
四
五
总分
得分
摄氏温度(℃)
…
0
10
…
华氏温度(℉)
…
32
50
…
相关试卷
这是一份2024年广西贵港市覃塘区九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广西防城港市九上数学开学质量检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广西贵港市覃塘区2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,在中,最简二次根式的个数为,如图,四边形内接于⊙,等内容,欢迎下载使用。