2024年福建省泉州市成功中学数学九上开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一个三角形的三个内角之比是1∶2∶3,且最小边长度是8,则最长边的长度是( )
A.10B.12C.16D.24
2、(4分)如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S△DGF的值为( )
A.4cm2B.6cm2C.8cm2D.9cm2
3、(4分)某学校拟建一间矩形活动室,一面靠墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,建成后的活动室面积为75m2,求矩形活动室的长和宽,若设矩形宽为x,根据题意可列方程为( )
A.x(27﹣3x)=75B.x(3x﹣27)=75
C.x(30﹣3x)=75D.x(3x﹣30)=75
4、(4分)下列图形中既是轴对称图形又是中心对称图形的是( )
A.等腰三角形B.平行四边形C.正五边形D.正十边形
5、(4分)在Rt△ABC中,斜边长AB=3,AB²+AC²+BC²的值为( )
A.18B.24C.15D.无法计算
6、(4分)如图,直线与相交于点P,点P的横坐标为-1,则关于x的不等式的解集在数轴上表示为( )
A.B.
C.D.
7、(4分)如图 ,在中□ABCD 中,点 E、F 分别在边 AB、CD 上移动,且 AE=CF,则四边形DEBF 不可能是( )
A.平行四边形B.梯形C.矩形D.菱形
8、(4分)若方程是一元二次方程,则m的值为( )
A.0B.±1C.1D.–1
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,已知,,现将沿所在的直线向右平移4cm得到,于相交于点,若,则阴影部分的面积为______.
10、(4分)已知一次函数y=kx+2的图象与x轴交点的横坐标为6,则当-3≤x≤3时,y的最大值是______.
11、(4分)如图,在平面直角坐标系中,点,过点作的垂线交轴于点,过点作的垂线交轴于点,过点作的垂线交轴于点……按此规律继续作下去,直至得到点为止,则点的坐标为_________.
12、(4分)某商场为了抓住夏季来临,衬衫热销的契机,决定用46000元购进A、B、C三种品牌的衬衫共300件,并且购进的每一种衬衫的数量都不少于90件.三种品牌的衬衫的进价和售价如下表所示:
如果该商场能够将购进的衬衫全部售出,但在销售这些衬衫的过程中还需要另外支出各种费用共计1000元,那么商场能够获得的最大利润是_____元.
13、(4分)分解因式:x2-9=_ ▲ .
三、解答题(本大题共5个小题,共48分)
14、(12分)已知一次函数的图象经过点(-2,-7)和(2,5),求该一次函数解析式并求出函数图象与y轴的交点坐标.
15、(8分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点A.
求作:直线AD,使得AD∥l.作法:如图2,
①在直线l上任取一点B,连接AB;
②以点B为圆心,AB长为半径画弧,
交直线l于点C;
③分别以点A,C为圆心,AB长为半径
画弧,两弧交于点D(不与点B重合);
④作直线AD.
所以直线AD就是所求作的直线.根据小东设计的尺规作图过程,完成下面的证明.(说明:括号里填推理的依据)
证明:连接CD.
∵AD=CD=__________=__________,
∴四边形ABCD是 ( ).
∴AD∥l( ).
16、(8分)如图,在△ABC 中,AB=AC,∠BAC=120°,E 为 BC 上一点,以 CE 为直径作⊙O 恰好经过 A、C 两点, PF⊥BC 交 BC 于点 G,交 AC 于点 F.
(1)求证:AB 是⊙O 的切线;
(2)如果 CF =2,CP =3,求⊙O 的直径 EC.
17、(10分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:,精确到,抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.
请你根据图中提供的信息,回答下列问题:
(1)求出扇形统计图中百分数的值为_____,所抽查的学生人数为______.
(2)求出平均睡眠时间为8小时的人数,并补全条形统计图.
(3)求出这部分学生的平均睡眠时间的众数和平均数.
(4)如果该校共有学生1800名,请你估计睡眠不足(少于8小时)的学生数.
18、(10分)已知一次函数的图象与正比例函数的图象的交点的纵坐标是4.且与轴的交点的横坐标是
(1)求这个一次函数的解析式;(2)直接写出时的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知a+b=5,ab=-6,则代数式ab2+a2b的值是______.
20、(4分)如图,在△ABC中,AC=BC=9,∠C=120°,D为AC边上一点,且AD=6,E是AB边上一动点,连接DE,将线段DE绕点D逆时针旋转30°得到DF,若F恰好在BC边上,则AE的长为_____.
21、(4分)已知方程的解满足x﹣y≥5,则k的取值范围为_____.
22、(4分)如果P(2,m),A (1, 1), B (4, 0)三点在同一直线上,则m的值为_________.
23、(4分)如图,△ACB≌△DCE,∠ACD=50°,则∠BCE的度数为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,经过点A(6,0)的直线y=kx﹣3与直线y=﹣x交于点B,点P从点O出发以每秒1个单位长度的速度向点A匀速运动.
(1)求点B的坐标;
(2)当△OPB是直角三角形时,求点P运动的时间;
(3)当BP平分△OAB的面积时,直线BP与y轴交于点D,求线段BD的长.
25、(10分)如图,在中,点是边上的一点,且,过点作于点,交于点,连接、.
(1)若,求证:平分;
(2)若点是边上的中点,求证:
26、(12分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点 坐标为.
(1)画出关于轴对称的;
(2)画出将绕原点逆时针旋转90°所得的;
(3)与能组成轴对称图形吗?若能,请你画出所有的对称轴.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据三角形的三个内角之比是1:2:3,求出各角的度数,再根据直角三角形的性质解答即可.
【详解】
设一份是x,则三个角分别是x,2x,3x.
再根据三角形的内角和定理,得:
x+2x+3x=180,
解得:x=30,则2x=60,3x=90.
故此三角形是有一个30角的直角三角形.
根据30的角所对的直角边是斜边的一半,得,最长边的长度是1.
故选C.
此题要首先根据三角形的内角和定理求得三个角的度数,再根据直角三角形的性质求得最长边的长度即可.
2、A
【解析】
试题分析:取CG的中点H,连接EH,根据三角形的中位线定理可得EH∥AD,再根据两直线平行,内错角相等可得∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,根据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再根据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.
解:如图,取CG的中点H,连接EH,
∵E是AC的中点,
∴EH是△ACG的中位线,
∴EH∥AD,
∴∠GDF=∠HEF,
∵F是DE的中点,
∴DF=EF,
在△DFG和△EFH中,,
∴△DFG≌△EFH(ASA),
∴FG=FH,S△EFH=S△DGF,
又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,
∴S△CEF=3S△EFH,
∴S△CEF=3S△DGF,
∴S△DGF=×12=4(cm2).
故选A.
考点:三角形中位线定理.
3、C
【解析】
设矩形宽为xm,根据可建墙体总长可得出矩形的长为(30-3x)m,再根据矩形的面积公式,即可列出关于x的一元二次方程,此题得解
【详解】
解:设矩形宽为xm,则矩形的长为(30﹣3x)m,
根据题意得:x(30﹣3x)=1.
故选:C.
本题考查的是一元二次方程,熟练掌握一元二次方程是解题的关键.
4、D
【解析】
根据轴对称图形和中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,不是中心对称图形.故错误;
B、不是轴对称图形,是中心对称图形.故错误;
C、是轴对称图形,不是中心对称图形.故错误;
D、是轴对称图形,也是中心对称图形.故正确.
故选:D.
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.
5、A
【解析】
根据题意运用勾股定理进行分析计算即可得出答案.
【详解】
解:∵Rt△ABC中,斜边是AB,
∴AC²+BC²= AB²,
∵AB=3,
∴AC²+BC²= AB²=9,
∴AB²+AC²+BC²=9+9=18.
故选:A.
本题考查勾股定理.根据题意正确判断直角三角形的直角边、斜边,利用勾股定理得出等式是解题的关键.
6、A
【解析】
观察函数图象得到当x>-1时,函数y=x+b的图象都在y=kx-1的图象上方,所以不等式x+b>kx-1的解集为x>-1,然后根据用数轴表示不等式解集的方法对各选项进行判断.
【详解】
当x>-1时,x+b>kx-1,
即不等式x+b>kx-1的解集为x>-1.
故选A.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.
7、B
【解析】
由于在平行四边形ABCD中AB=CD,而AE=CF,由此可以得到BE=DF,根据平行四边形的判定方法即可判定其实平行四边形,所以不可能是梯形.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
又AE=CF,
∴BE=DF,
∴四边形BEDF是平行四边形,所以不可能是梯形.
故选:B.
本题考查平行四边形的性质,注意:一组对边平行,一组对角相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形不一定是平行四边形,如:等腰梯形.
8、D
【解析】
根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,且二次项系数不等于0,即可进行求解,
【详解】
因为方程是一元二次方程,
所以,,
解得且
所以,
故选D.
本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据平移的性质求出A′B,然后根据阴影部分的面积列式计算即可得解.
【详解】
解:∵AB=BC=9cm,平移距离为4cm,
∴A′B=9−4=5cm,
∵,
∴,
∵∠ABC=90°,
∴阴影部分的面积=,
故答案为:1.
本题考查了平移的性质,是基础题,熟记平移的性质是解题的关键.
10、1≤y≤1
【解析】
将点(6,0)代入解析式即可求出k的值,得到一次函数的增减性,然后结合自变量的取值范围得到函数值的取值范围即可.
【详解】
∵一次函数的图象与x轴交点的横坐标为,
∴这个交点的坐标为(6,0),
把(6,0)代入中得:
,
,
∵<0,y随x的增大而减小,
当时,=1.
当时,.
则.
故答案是:.
本题考查了利用直线上点坐标确定解析式,熟练掌握直线上任意一点的坐标都满足函数关系式;对于一次函数求极值问题可通过增减性求,也可以代特殊值求出.
11、
【解析】
分别写出、、的坐标找到变化规律后写出答案即可.
【详解】
解:、,
,
的坐标为:,
同理可得:的坐标为:,的坐标为:,
,
点横坐标为,即:,
点坐标为,,
故答案为:,.
本题考查了规律型问题,解题的关键是根据点的坐标的变化得到规律,利用得到的规律解题.
12、1.
【解析】
设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,根据商场所获利润=A种衬衫的利润+B种衬衫的利润+C种衬衫的利润-1000,列出方程,然后根据一次函数的性质可求解.
【详解】
解:设购进A种品牌衬衫a件,B种品牌衬衫b件,则C种品牌衬衫为(300﹣a﹣b)件,获得的总利润为y元,
y=(200﹣100)a+(350﹣200)b+(300﹣150)(300﹣a﹣b)﹣1000=﹣50a+44000,
∵购进的每一种衬衫的数量都不少于90件,
∴a≥90,
∴当a=90时,y取得最大值,此时y=﹣50×90+44000=1,
故答案为:1.
一次函数在实际生活中的应用是本题的考点,根据题意列出解析式是解题的关键.
13、 (x+3)(x-3)
【解析】
x2-9=(x+3)(x-3),
故答案为(x+3)(x-3).
三、解答题(本大题共5个小题,共48分)
14、y=3x-1, 函数图象与y轴的交点坐标(0,-1).
【解析】
设一次函数解析式为y=kx+b,把一次函数图象上两个已知点的坐标代入得到,然后解方程组求出k、b即可得到一次函数解析式;计算出一次函数当x=0时所对应的函数值即可这个一次函数的图象与y轴的交点坐标.
【详解】
设该一次函数解析式为
把点(-2,-7)和(2,5)代入得:
解得
当x=0时,y= -1
∴交点坐标为(0,-1)
此题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解题关键在于利用待定系数法求解析式.
15、BC=AB,菱形(四边相等的四边形是菱形),菱形的对边平行.
【解析】
由菱形的判定及其性质求解可得.
【详解】
证明:连接CD.
∵AD=CD=BC=AB,
∴四边形ABCD是菱形(四条边都相等的四边形是菱形).
∴AD∥l(菱形的对边平行)
此题考查菱形的判定,掌握判定定理是解题关键.
16、(1)见解析;(2)⊙O 的直径EC= 1.
【解析】
(1)若要证明AB是⊙O的切线,则可连接AO,再证明AO⊥AB即可.
(2)连接OP,设OG为x,在直角三角形FCG中,由CF和角ACB为10°,利用10°角所对的直角边等于斜边的一半及勾股定理求出CG的长,即可表示出半径OC和OP的长,在直角三角形CGP中利用勾股定理表示出PG的长,然后在直角三角形OPG中,利用勾股定理列出关于x的方程,求出方程的解即可得到x的值,然后求出直径即可.
【详解】
证明:(1)连接AO,
∵AB=AC,∠BAC=120°,
∴∠B=∠ACB=10°,
∵AO=CO,
∴∠0AC=∠OCA=10°,
∴∠BAO=120°-10°=90°,
∵OA 是半径
∴AB 是⊙O 的切线;
(2)解:连接OP,
∵PF⊥BC,∴∠FGC=∠EGP=90°,
∵CF=2,∠FCG=10°,∴FG=1,
∴在Rt△FGC 中CG=
∵CP=1.∴Rt△GPC 中,PG=
设OG=x,则OC=x+,连接OP,,显然OP=OC=x+
在 Rt△OPG 中,由勾股定理知
即(x+)2=x2+()2∴x .
∴⊙O 的直径EC=EG+CG=2x++=1.
故答案为:(1)见解析;(2)⊙O 的直径EC= 1.
本题考查圆的切线的判定,常用的切线的判定方法是连接圆心和某一点再证垂直.
17、(1)45%,60人;(2)18人,条形统计图见解析;(3)众数7,平均数7.2;(4)1170人.
【解析】
(1)用1减去每天的平均睡眠时间为6小时,8小时,9小时所占的百分比即可求出a的值,用每天的平均睡眠时间为6小时的人数除以其所占的百分比即可得到总人数;
(2)用总人数乘以每天的平均睡眠时间为8小时所占的百分比即可求出睡眠时间为8小时的人数,用总人数乘以a的值即可求出睡眠时间为7小时的人数,然后即可补全条形统计图;
(3)根据众数和平均数的定义计算即可;
(4)先计算出睡眠时间少于8小时的人所占的百分比,然后用总人数1800乘以这个百分比即可得出答案.
【详解】
(1) ,
所抽查的学生人数为(人);
(2)平均睡眠时间为8小时的人数为(人),
平均睡眠时间为7小时的人数为(人),
条形统计图如下:
(3)由扇形统计图可知,睡眠时间为7小时的人数最多,所以这部分学生的平均睡眠时间的众数为7,平均数为 ;
(4) (人)
本题主要考查条形统计图和扇形统计图,掌握条形统计图和扇形统计图以及众数,平均数的求法是解题的关键.
18、(1);(2)
【解析】
(1)根据待定系数法即可解决;
(2)观察图像即可得出答案.
【详解】
解:(1)∵图像经过点A
∴当时,
∴
∵图像经过点且与轴交于点
∴
解得:
所以这个一次函数解析式为
(2)∵一次函数与正比例函数相交于交点,
观察图像可知,当时,,
∴答案为.
此题主要考查了待定系数法求一次函数、全等三角形的判定和性质、勾股定理等知识,学会分类讨论的数学思想是正确解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1.
【解析】
先利用提公因式法因式分解,然后利用整体代入法求值即可.
【详解】
解:∵ab2+a2b=ab(a+b),
而a+b=5,ab=-6,
∴ab2+a2b=-6×5=-1.
故答案为:-1.
此题考查的是因式分解,掌握利用提公因式法因式分解是解决此题的关键.
20、3+
【解析】
由,可知,又有,联想一线三等角模型,延长到,使,得,进而可得,,由于,即可得是直角三角形,易求,由即可解题.
【详解】
解:如图,延长到,使,连接,
,,
,,
,
又,
,
在和中,
,
,,
,
,
设,则,由得:
,
解得,(不合题意舍去),
,
,
故答案为:.
本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质和等腰直角三角形的性质.本题解题关键是通过一线三等角模型构造全等三角形,从而得到.
21、k≥1
【解析】
两方程相减可得x﹣y=4k﹣3,根据x﹣y≥5得出关于k的不等式,解不等式即可解答.
【详解】
两方程相减可得x﹣y=4k﹣3,
∵x﹣y≥5,
∴4k﹣3≥5,
解得:k≥1,
故答案为:k≥1.
本题考查一元一次不等式的应用,根据题意列出关于k的不等式是解题的关键.
22、
【解析】
设直线的解析式为y=kx+b(k≠0),
∵A(1,1),B(4,0),
,解之得 ,
∴直线AB的解析式为 ,
∵P(2,m)在直线上,
.
23、50°
【解析】
根据全等三角形对应角相等可得∠ACB=∠DCE,然后根据∠ACB+∠BCD=∠DCE+∠BCD得出答案.
【详解】
解: ∵△ACB≌△DCE
∴∠ACB=∠DCE
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠BCE=∠ACD=50°
故答案为:50°.
本题考查全等三角形的性质,题目比较简单.
二、解答题(本大题共3个小题,共30分)
24、(1)点B的坐标(2,-2);(2)当△OPB是直角三角形时,求点P运动的时间为2秒或4秒;(3)当BP平分△OAB的面积时,线段BD的长为2.
【解析】
(1)根据点A的坐标,利用待定系数法可求出直线AB的解析式,联立直线AB及OB的解析式成方程组,通过解方程组可求出点B的坐标;
(2)由∠BOP=45°可得出∠OPB=90°或∠OBP=90°,①当∠OPB=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间;②当∠OBP=90°时,△OPB为等腰直角三角形,根据等腰直角三角形的性质可得出OP的长,结合点P的运动速度可求出点P运动的时间.综上,此问得解;
(3)由BP平分△OAB的面积可得出OP=AP,进而可得出点P的坐标,根据点B,P的坐标,利用待定系数法可求出直线BP的解析式,利用一次函数图象上点的坐标特征可求出点D的坐标,过点B作BE⊥y轴于点E,利用勾股定理即可求出BD的长.
【详解】
(1)直线y=kx﹣3过点A(1,0),
所以,0=1k-3,解得:k=,
直线AB为:-3,
,解得:,
所以,点B的坐标(2,-2)
(2)∵∠BOP=45°,△OPB是直角三角形,
∴∠OPB=90°或∠OBP=90°,如图1所示:
①当∠OPB=90°时,△OPB为等腰直角三角形,
∴OP=BP=2,
又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,
∴此时点P的运动时间为2秒;
②当∠OBP=90°时,△OPB为等腰直角三角形,
∴OP=2BP=4,
又∵点P从点O出发以每秒1个单位长度的速度向点A匀速运动,
∴此时点P的运动时间为4秒.
综上,当△OPB是直角三角形时,点P的运动时间为2秒或4秒.
(3)∵BP平分△OAB的面积,
∴S△OBP=S△ABP,
∴OP=AP,
∴点P的坐标为(3,0).
设直线BP的解析式为y=ax+b(a≠0),
将B(2,-2),点P(3,0)代入y=ax+b,得:
,
解得:,
∴直线BP的解析式为y=2x-1.
当x=0时,y=2x-1=-1,
∴点D的坐标为(0,-1).
过点B作BE⊥y轴于点E,如图2所示.
∵点B的坐标为(2,-2),点D的坐标为(0,-1),
∴BE=2,CE=4,
∴BD==2,
∴当BP平分△OAB的面积时,线段BD的长为2.
本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、等腰直角三角形、三角形的面积以及勾股定理,解题的关键是:(1)联立直线AB及OB的解析式成方程组,通过解方程组求出点B的坐标;(2)分∠OPB=90°和∠OBP=90°两种情况,利用等腰直角三角形的性质求出点P的运动时间;(3)根据点的坐标,利用待定系数法求出直线BP的解析式.
25、(1)见解析;(2)见解析.
【解析】
(1)由四边形是平行四边形,,易证得,又由,可证得,即可证得平分;
(2)延长,交的延长线于点,易证得,又由,可得是的斜边上的中线,继而证得结论.
【详解】
证明:(1)四边形是平行四边形,
,,
,
,
,
,
,
在和中,
,
,
,
平分;
(2)如图,延长,交的延长线于点,
四边形是平行四边形,
,
,
点是边上的中点,
,
在和中,
,
,
,
,
,
,
.
此题考查了平行四边形的性质、等腰三角形的性质、直角三角形的性质以及全等三角形的判定与性质.注意掌握辅助线的作法,注意掌握数形结合思想的应用.
26、(1)见解析;(2)见解析;(3)能,图见解析;
【解析】
(1)根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;
(2)根据网格结构找出点A、B、C绕原点O按逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可;
(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线.
【详解】
(1)如图所示:
(2)如图所示:
(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,如图,对称轴有2条.
此题考查利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
题号
一
二
三
四
五
总分
得分
型号
A
B
C
进价(元/件)
100
200
150
售价(元/件)
200
350
300
2024年甘肃省天水市罗玉中学数学九上开学质量检测模拟试题【含答案】: 这是一份2024年甘肃省天水市罗玉中学数学九上开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年重庆市南川中学数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年重庆市南川中学数学九上开学质量检测模拟试题【含答案】,共28页。试卷主要包含了选择题,三象限D.第二,解答题等内容,欢迎下载使用。
2024-2025学年江苏省苏州平江中学数学九上开学质量检测模拟试题【含答案】: 这是一份2024-2025学年江苏省苏州平江中学数学九上开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。