还剩20页未读,
继续阅读
2024年福建省惠安惠南中学九年级数学第一学期开学达标检测模拟试题【含答案】
展开这是一份2024年福建省惠安惠南中学九年级数学第一学期开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平行四边形ABCD中,AB=4,AD=6,∠D=120°,延长CB至点M,使得BM=BC,连接AM,则AM的长为( )
A.3.5B.C.D.
2、(4分)下列计算正确的是( )
A.B.5=5
C. D.
3、(4分)以下问题,不适合用普查的是( )
A.了解全班同学每周阅读的时间B.亚航客机飞行前的安全检测
C.了解全市中小学生每天的零花钱D.某企业招聘部门经理,对应聘人员面试
4、(4分)数据3,2,0,1,的方差等于( )
A.0B.1C.2D.3
5、(4分)已知平行四边形ABCD中,∠B=2∠A,则∠A=( )
A.36°B.60°C.45°D.80°
6、(4分)如图,在中,,垂足为,,,则的长为( )
A.B.C.D.
7、(4分)如图,中,,,平分交于,若,则的面积为( )
A.B.C.D.
8、(4分)如图,一次函数的图象与轴的交点坐标为,则下列说法正确的有( )
①随的增大而减小;②;③关于的方程的解为;④当时,.
A.1个B.2个C.3个D.4个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图所示,D,E分别是△ABC的边AB,AC的中点,且BC=7,则DE=______.
10、(4分)已知,菱形中,、分别是、上的点,且,,则__________度.
11、(4分)已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为_____.
12、(4分)把化为最简二次根式,结果是_________.
13、(4分)如图,已知矩形ABCD的边AB=3,AD=8,顶点A、D分别在x轴、y轴上滑动,在矩形滑动过程中,点C到原点O距离的最大值是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)一列火车以的速度匀速前进.
(1)求行驶路程单位:关于行驶时间单位:的函数解析式;
(2)在平面直角坐标系中画出该函数的图象.
15、(8分)如图,直线AB:y=﹣x﹣b分别与x、y轴交于A(6,0)、B两点.
(1)求直线AB的解析式;
(2)若P为A点右侧x轴上的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角△BPQ,连接QA并延长交y轴于点K,当P点运动时,K点的位置是否发生变化?若不变,请求出它的坐标;如果变化,请说明理由.
16、(8分)计算:(1—)×+
17、(10分)如图,一个可以自由转动的转盘,分成了四个扇形区域,共有三种不同的颜色,其中红色区域扇形的圆心角为.小华对小明说:“我们用这个转盘来做一个游戏,指针指向蓝色区域你赢,指针指向红色区域我赢”.你认为这个游戏规则公平吗?请说明理由.
18、(10分)如图,在平面直角坐标系中,一次函数的图象与正比例函数的图象都经过点.
(1)求一次函数和正比例函数的解析式;
(2)若点是线段上一点,且在第一象限内,连接,设的面积为,求面积关于的函数解析式.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)把多项式n(n﹣2)+m(2﹣n)分解因式的结果是_____.
20、(4分)如图,⊙O 是△ABC 的外接圆,已知∠ABO=30º,则∠ACB 的为_____º.
21、(4分)当m=_____时,是一次函数.
22、(4分)如图,在平行四边形中,对角线、相交于点,若,,sin∠BDC=,则平行四边形的面积是__________.
23、(4分)如图,小军在地面上合适的位置平放了一块平面镜(平面镜的高度忽略不计),刚好在平面镜中的点处看到旗杆顶部,此时小军的站立点与点的水平距离为,旗杆底部与点的水平距离为.若小军的眼睛距离地面的高度为(即),则旗杆的高度为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)梯形中,,,,,、在上,平分,平分,、分别为、的中点,和分别与交于和,和交于点.
(1)求证:;
(2)当点在四边形内部时,设,,求关于的函数关系式,并写出自变量的取值范围;
(3)当时,求的长.
25、(10分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,分别按下列要求画以格点为顶点三角形和平行四边形.
(1)三角形三边长为4,3,;
(2)平行四边形有一锐角为45°,且面积为1.
26、(12分)函数y=mx+n与y=nx的大致图象是( )
A.B.
C.D.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
作AN⊥BM于N,求出∠BAN=30°,由含30°角的直角三角形的性质得出BN、AN的长,由勾股定理即可得出答案.
【详解】
作AN⊥BM于N,如图所示:
则∠ANB=∠ANM=90°,
∵四边形ABCD是平行四边形,
∴BC=AD=6,∠ABC=∠D=120°,
∴∠ABN=60°,
∴∠BAN=30°,
∴BN=AB=2,AN=,
∵BM=BC=3,
∴MN=BM-BN=1,
∴AM=,
故选:B.
本题考查了平行四边形的性质、含30°角的直角三角形的性质以及勾股定理等知识;熟练掌握平行四边形的性质和含30°角的直角三角形的性质是解题的关键.
2、D
【解析】
按二次根式的运算法则分别计算即可.
【详解】
解:已是最简,故A错误;5,故B错误; ,故C错误;,故D正确;
故选择D.
本题考查了二次根式的运算.
3、C
【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
A、了解全班同学每周阅读的时间适合普查,故A不符合题意;
B、亚航客机飞行前的安全检测是重要的调查,故B不符合题意;
C、了解全市中小学生每天的零花钱适合抽要调查,故C符合题意;
D、某企业招聘部门经理,对应聘人员面试,适合普查,故D不符合题意;
故选C.
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4、C
【解析】
先计算这5个数据的平均数,再根据方差公式计算即可.
【详解】
解:这5个数的平均数=(3+2+0+1-1)÷5=1,所以这组数据的方差=.
故选:C.
本题考查的是方差的计算,属于基础题型,熟练掌握方差的计算公式是解题的关键.
5、B
【解析】
根据平行四边形的性质得出BC∥AD,推出∠A+∠B=180°,求出∠A的度数即可.
【详解】
∵四边形ABCD是平行四边形,∴BC∥AD,∴∠A+∠B=180°.
∵∠B=2∠A,∴∠A=60°.
故选B.
本题考查了平行四边形的性质,平行线的性质的应用,关键是平行四边形的邻角互补.
6、A
【解析】
根据题意,可以证得△ACD∽△CBD,进而得到,由已知数据代入即可.
【详解】
由题意知,,
∴∠ADC=∠BDC=90°,∠A=∠BCD,
∴△ACD∽△CBD,
∴,
即,
∵,,
∴CD=4,
故选:A.
本题考查了直角三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键.
7、A
【解析】
由平分可得,故BD=CD=2,利用30°的Rt可得AD=BD=1可得AC=AD+CD=3,根据勾股定理可得:AB= 计算即可得的面积.
【详解】
∵中,,
∴
∵平分
∴
∴
∴BD=CD=2
∵,,
∴AD=BD=1
∴AC=AD+CD=1+2=3
根据勾股定理可得:AB=
∴
故选:A
本题考查了勾股定理及30°的直角三角形所对的直角边是斜边的一半及三角形的面积公式,掌握勾股定理及30°的直角三角形的性质是解题的关键.
8、B
【解析】
根据一次函数的性质,一次函数与一元一次方程的关系对各个小项分析判断即可得解.
【详解】
图象过第一、二、三象限,
∴,,故①②错误;
又∵图象与轴交于,
∴的解为,③正确.
当时,图象在轴上方,,故④正确.
综上可得③④正确
故选:B.
本题考查了一次函数与一元一次方程,利用一次函数的性质、一次函数与一元一次方程的关系是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3.1
【解析】
根据三角形的中位线定理解答即可.
【详解】
解:∵D,E分别是△ABC的边AB,AC的中点,且BC=7,
∴.
故答案为:3.1.
本题考查了三角形的中位线定理,属于基本题型,熟练掌握该定理是解题关键.
10、
【解析】
先连接AC,证明△ABE≌△ACF,然后推出AE=AF,证明△AEF是等边三角形,最后运用三角形外角性质,求出∠CEF的度数.
【详解】
如图,连接AC,
在菱形ABCD中,AB=BC,
∵∠B=60°,
∴△ABC是等边三角形,
∴AB=AC,
∵∠BAE+∠CAE=∠BAC=60°,
∠CAF+∠EAC=∠EAF=60°,
∴∠BAE=∠CAF,
∵∠B=∠ACF=60°,
在△ABE和△ACF中,
∠B=∠ACF,AB=AC,∠BAE=∠CAF,
∴△ABE≌△ACF(ASA),
∴AE=AF,
又∵∠EAF=60°,
∴△AEF是等边三角形,
∴∠AEF=60°,
由三角形的外角性质,∠AEF+∠CEF=∠B+∠BAE,
∴60°+∠CEF=60°+23°,
解得∠CEF=23°.
故答案为23°.
本题考查了菱形的性质和全等三角形的判定,熟练掌握全等三角形的判定方法,结合等边三角形性质和外角定义是解决本题的关键因素.
11、1
【解析】
根据OB和OC分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DO,OE=EC.然后即可得出答案.
【详解】
解:∵在△ABC中,OB和OC分别平分∠ABC和∠ACB,
∴∠DBO=∠OBC,∠ECO=∠OCB,
∵DE∥BC,
∴∠DOB=∠OBC=∠DBO,∠EOC=∠OCB=∠ECO,
∴DB=DO,OE=EC,
∵DE=DO+OE,
∴DE=BD+CE=1.
故答案为1.
此题主要考查学生对等腰三角形的判定与性质平行线段性质的理解和掌握,此题关键是求证DB=DO,OE=EC,难度不大,是一道基础题.
12、
【解析】
直接利用二次根式的性质化简求出答案.
【详解】
.
故答案为.
本题考查了二次根式的性质与化简,正确开平方是解题的关键.
13、1
【解析】
取AD的中点E,连接OE,CE,OC,根据直角三角形斜边上的中线等于斜边的一半即可求出OE,然后根据勾股定理即可求CE,然后根据两点之间线段最短即可求出OC的最大值.
【详解】
如图,取AD的中点E,连接OE,CE,OC,
∵∠AOD=10°,
∴Rt△AOD中,OE=AD=4,
又∵∠ADC=10°,AB=CD=3,DE=4,
∴Rt△CDE中,CE==5,
又∵OC≤CE+OE=1(当且仅当O、E、C共线时取等号),
∴OC的最大值为1,
即点C到原点O距离的最大值是1,
故答案为:1.
此题考查的是直角三角形的性质和求线段的最值问题,掌握直角三角形斜边上的中线等于斜边的一半、利用勾股定理解直角三角形和两点之间线段最短是解决此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)如图所示见解析.
【解析】
1直接利用速度时间路程进而得出答案;
2直接利用正比例函数图象画法得出答案.
【详解】
(1)由题意可得:;
(2)如图所示:
考查了一次函数的应用,正确得出函数关系式是解题关键.
15、(1)y=﹣x+6;(2)不变化,K(0,-6)
【解析】
(1)根据点A的坐标,利用待定系数法可求出直线AB的解析式;
(2)过点Q作QH⊥x轴于点H,易证△BOP≌△PHQ,利用全等三角形的性质可得出OB=HP,OP=HQ,两式相加得PH+PO=BO+QH,即OA+AH=BO+QH,又OA=OB,可得AH=QH,即△AHQ是等腰直角三角形,进而证得△AOK为等腰直角三角形,求出OK=OA=6,即可得出K点的坐标.
【详解】
解:(1)将A(6,0)代入y=-x-b,得:-6-b=0,
解得:b=-6,
∴直线AB的解析式为y=-x+6;
(2)不变化,K(0,-6)
过Q作QH⊥x轴于H,
∵△BPQ是等腰直角三角形,
∴∠BPQ=90°,PB=PQ,
∵∠BOA=∠QHA=90°,
∴∠BPO=∠PQH,
∴△BOP≌△HPQ,
∴PH=BO,OP=QH,
∴PH+PO=BO+QH,
即OA+AH=BO+QH,
又OA=OB,
∴AH=QH,
∴△AHQ是等腰直角三角形,
∴∠QAH=45°,
∴∠OAK=45°,
∴△AOK为等腰直角三角形,
∴OK=OA=6,
∴K(0,-6).
本题考查了待定系数法求一次函数解析式、全等三角形的判定与性质以及等腰三角形的判定,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数解析式;(2)利用全等三角形的性质及等腰三角形的判定得出△AOK是等腰三角形.
16、
【解析】
原式各项化为最简二次根式后,先算乘法后算加减,合并可得到结果.
【详解】
解:原式=
=
此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.
17、游戏公平
【解析】
直接利用概率公式求得指针指向蓝色区域和红色区域的概率,进而比较得出答案.
【详解】
解:∵红色区域扇形的圆心角为,
∴蓝色区域扇形的圆心角为60°+60°,
,
,
∴,
所以游戏公平.
故答案为:游戏公平.
本题考查游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.
18、(1)y=﹣x+4,;(2)S=2x(0<x≤3).
【解析】
(1)把B(3,1)分别代入y=﹣x+b和y=kx即可得到结论;
(2)根据三角形的面积公式即可得到结论.
【详解】
(1)把B(3,1)分别代入y=﹣x+b和y=kx得1=﹣3+b,1=3k,解得:b=4,k,∴y=﹣x+4,yx;
(2)∵点P(x,y)是线段AB上一点,∴S•xP2x(0<x≤3).
本题考查了两直线相交或平行,三角形面积的求法,待定系数法确定函数关系式,正确的理解题意是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(n﹣2)(n﹣m).
【解析】
用提取公因式法分解因式即可.
【详解】
n(n﹣2)+m(2﹣n)= n(n﹣2)-m(n-2)=(n﹣2)(n﹣m).
故答案为(n﹣2)(n﹣m).
本题考查了用提公因式法进行因式分解;一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
20、60°
【解析】
首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.
【详解】
解:△AOB中,OA=OB,∠ABO=30°;
∴∠AOB=180°-2∠ABO=120°;
∴∠ACB=∠AOB=60°.
故选A.
本题考查圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.
21、3或0
【解析】
根据一次函数的定义即可求解.
【详解】
依题意得m-3≠0,2m+1=1或m-3=0,
解得m=0或m=3,
故填:3或0.
此题主要考查一次函数的定义,解题的关键是熟知一次函数的特点.
22、1
【解析】
作CE⊥BD,利用三角函数求出CE,即可算出△BCD的面积,从而得出平行四边形ABCD的面积.
【详解】
如图所示,过点C作CE⊥BD交BD于E,
∵CD=AB=4, sin∠BDC=,
∴CE=,
∴S△BCD=,
∴S平行四边形ABCD=2 S△BCD=1.
故答案为:1.
本题考查三角函数与几何的应用,关键在于通过三角函数求出高.
23、1
【解析】
分析:根据题意容易得到△CDE∽△CBA,再根据相似三角形的性质解答即可.
详解:由题意可得:AB=1.5m,BC=2m,DC=12m,
△ABC∽△EDC,
则,
即,
解得:DE=1,
故答案为1.
点睛:本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2);(3)3或.
【解析】
(1)由中位线的性质,角平分线的定义和平行线的性质得出,易证,则结论可证;
(2)过作交于点K,过点D作交于点,则得到矩形,则有,,然后利用(1)中的结论有, ,在中,利用含30°的直角三角形的性质可得出QC,DQ的长度,然后在中利用勾股定理即可找到y关于x的函数关系式;
(3)分两种情况:点在梯形内部和点在梯形内部,当点在梯形内部时,有;当点在梯形内部时,有 ,分别结论(2)中的关系式即可求出EG的长度.
【详解】
(1)证明:、分别是、的中点,
.
平分,
.
又,
,
,
.
点是的中点,
.
.
(2)过作交于点K,过点D作交于点,
∵,,,
∴四边形是矩形,
,.
,,
,
同理:.
在中,
,
,,
.
,
.
在中,.
,
即.
.
(3)①点在梯形内部.
∵是梯形的中位线,
,
即.
解得:,
即.
②点在梯形内部.
同理:.
解得:,
即.
综上所述,EG的长度为3或.
本题主要考查四边形的综合问题,掌握中位线的性质,含30°的直角三角形的性质,勾股定理是基础,能够作出辅助线并分情况讨论是解题的关键.
25、(1)见解析;(2)见解析.
【解析】
分析:(1)4在网格线上,3是直角边为3的直角三角形的斜边,是直角边分别为1和3的直角三角形的斜边;(2)先构造一个直角边为2的等腰直角三角形,以此为基础再构造平行四边形.
详解:(1)图(1)即为所求;
(2)图(2)即为所求.
点睛:本题考查了勾股定理,在格点中,可结合网格中的直角构造直角三角形,一般有理数可用网格线表示,无理数可表示为直角三角形的斜边,勾股定理确定它的两条直角边.
26、D
【解析】
当m>0,n>0时,y=mx+n经过一、二、三象限,y=nx经过一、三象限;
当m>0,n<0时,y=mx+n经过一、三、四象限,y=nx经过二、四象限;
当m<0,n>0时,y=mx+n经过一、二、四象限,y=nx经过一、三象限;
当m<0,n<0时,y=mx+n经过二、三、四象限,y=nx经过二、四象限.
综上,A,B,C错误,D正确
故选D.
考点:一次函数的图象
题号
一
二
三
四
五
总分
得分
批阅人
相关试卷
2024年北京市中学关村中学九年级数学第一学期开学达标检测模拟试题【含答案】:
这是一份2024年北京市中学关村中学九年级数学第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年福建省惠安科山中学数学九年级第一学期期末经典模拟试题含答案:
这是一份2023-2024学年福建省惠安科山中学数学九年级第一学期期末经典模拟试题含答案,共8页。试卷主要包含了下列事件中,是必然事件的是等内容,欢迎下载使用。
福建省惠安惠南中学2023-2024学年数学九上期末统考试题含答案:
这是一份福建省惠安惠南中学2023-2024学年数学九上期末统考试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,在中,,,则的值是,方程x2﹣9=0的解是等内容,欢迎下载使用。