2024-2025学年浙江省宁波市海曙区数学九上开学复习检测模拟试题【含答案】
展开
这是一份2024-2025学年浙江省宁波市海曙区数学九上开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某青年排球队12名队员的年龄情况如下表:
其中x>y,中位数为20,则这个队队员年龄的众数是( )
A.3B.4C.19D.20
2、(4分)如图,广场中心的菱形花坛ABCD的周长是40米,∠A=60°,则A,C两点之间的距离为( )
A.5米B.5米C.10米D.10米
3、(4分)化简:( )
A.2B.-2C.4D.-4
4、(4分)若代数式有意义,则x的取值是( )
A.x=2B.x≠2C.x=3D.x≠﹣3
5、(4分)一元二次方程2x(x+1)=(x+1)的根是()
A.x=0B.x=1
C.D.
6、(4分)分式有意义,x的取值范围是( )
A.x≠2B.x≠﹣2C.x=2D.x=﹣2
7、(4分)为迎接“劳动周”的到来,某校将九(1)班50名学生本周的课后劳动时间比上周都延长了10分钟,则该班学生本周劳动时间的下列数据与上周比较不发生变化的是( )
A.平均数 B.中位数 C.众数 D.方差
8、(4分)一个正n边形的每一个外角都是45°,则n=( )
A.7B.8C.9D.10
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若代数式在实数范围内有意义,则x的取值范围是_______.
10、(4分)如图,身高1.6米的小明站在处测得他的影长为3米,影子顶端与路灯灯杆的距离为12米,则灯杆的高度为_______米.
11、(4分)如图,已知一次函数与y=2x+m的图象相交于,则关于的不等式的解集是__.
12、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E为BC边的中点,连接OE,若AB=4,则线段OE的长为_____.
13、(4分)如图,一次函数y=kx+b与x轴、y轴分别交于A、B两点,则不等式kx+b﹣1>0的解集是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了比较甲、乙两种水稻秧苗是否出苗整齐,每种秧苗各取5株并量出每株的长度如下表所示(单位:厘米)通过计算平均数和方差,评价哪个品种出苗更整齐.
15、(8分)已知:菱形ABCD的两条对角线AC与BD相交于点O,且AC=6,BD=8,求菱形的周长和面积.
16、(8分)如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=6cm, ∠BAO=30°,点F为AB的中点.
(1)求OF的长度;
(2)求AC的长.
17、(10分)为了丰富学生的课外活动,拓展孩子们的课外视野,我校的社团活动每年都在增加,社员也一直在增加.2017年我校八年级社员的总人数是300人,2019年我校八年级总校社员有432人。试求出这两年八年级社员人数的平均增长率.
18、(10分)如图1,正方形ABCD的边长为4,对角线AC、BD交于点M.
(1)直接写出AM= ;
(2)P是射线AM上的一点,Q是AP的中点,设PQ=x.
①AP= ,AQ= ;
②以PQ为对角线作正方形,设所作正方形与△ABD公共部分的面积为S,用含x的代数式表示S,并写出相应的x的取值范围.(直接写出,不需要写过程)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一个黄金矩形的长为2,则其宽等于______.
20、(4分)如图,△ABC是边长为6的等边三角形,D是AB中点,E是边BC上一动点,连结DE,将DE绕点D逆时针旋转60°得DF,连接CF,若CF=,则BE=_________。
21、(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为_____.
22、(4分)计算:=_____.
23、(4分)如图,一个宽为2 cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是_____________cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)甲、乙两组同学进行一分钟引体向上测试,评分标准规定,做6个以上含6个为合格,做9个以上含9个为优秀,两组同学的测试成绩如下表:
现将两组同学的测试成绩绘制成如下不完整的统计图表:
将条形统计图补充完整;
统计表中的______,______;
人说甲组的优秀率高于乙组优秀率,所以甲组成绩比乙组成绩好,但也有人说乙组成绩比甲组成绩好,请你给出两条支持乙组成绩好的理由.
25、(10分)如图,直线分别与轴、轴交于点、点,与直线交于点.
(1)若,请直接写出的取值范围;
(2)点在直线上,且的面积为3,求点的坐标?
26、(12分)甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:
(1)谁先出发早多长时间谁先到达B地早多长时间?
(2)两人在途中的速度分别是多少?
(3)分别求出表示甲、乙在行驶过程中的路程与时间之间的函数关系式(不要求写出自变量的取值范围).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先求出x+y=7,再根据x>y,由众数的定义即可求出这个队员年龄的众数.
【详解】
解:依题意有x+y=12−1−2−2=7,
∴y=7-x
∵x>y,
∴x>7-x
∴
∵x为整数
∴x≥4,
∴这个队队员年龄的众数是1.
故选C.
本题主要考查了中位数,众数,掌握中位数,众数是解题的关键.
2、D
【解析】
设AC与BD交于点O.
∵四边形ABCD为菱形,
∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=40÷4=10米
∵∠BAD=60°,
∴△ABD为等边三角形,
∴BD=AB=10米,OD=OB=5米
在Rt△AOB中,根据勾股定理得:OA=5 米
∴AC=2OA=10米.
故选D.
3、A
【解析】
根据二次根式的性质解答.
【详解】
解:.
故选:A.
本题主要考查了根据二次根式的性质化简.解题的关键是掌握二次根式的性质.
4、D
【解析】
试题解析:由题意得:x+3≠0,
解得:x≠-3,
故选D.
5、D
【解析】
移项,提公因式法分解因式,即可求得方程的根.
【详解】
解:2x(x+1)=(x+1),
2x(x+1)-(x+1)=0,
(2x-1)(x+1)=0,
则方程的解是:x1= ,x2=-1.
故选:D.
本题考查一元二次方程的解法-因式分解法,根据方程的特点灵活选用合适的方法是解题的关键.
6、B
【解析】
分式中,分母不为零,所以x+2≠0,所以x≠-2
【详解】
解:因为有意义,所以x+2≠0,所以x≠-2,所以选B
本题主要考查分式有意义的条件
7、D
【解析】【分析】根据平均数,中位数,众数,方差的定义或计算公式可以分析出结果.
【详解】由已知可得,平均数增加了;中位数也增加了;众数也增加了;方差不变.
故选:D
【点睛】本题考核知识点:数据的代表.解题关键点:理解相关定义.
8、B
【解析】
根据正多边形的边数=360°÷每一个外角的度数,进行计算即可得解.
【详解】
解:n=360°÷45°=1.
故选:B.
本题考查了多边形的外角,熟记正多边形的边数、每一个外角的度数、以及外角和360°三者之间的关系是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
解:∵在实数范围内有意义,
∴x-1≥2,
解得x≥1.
故答案为x≥1.
本题考查的是二次根式有意义的条件,即被开方数大于等于2.
10、
【解析】
根据在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似解答.
【详解】
解:如图: ∵AB∥DE, ∴CD:BC=DE:AB,
∴1.6:AB=3:12, ∴AB=6.1米,
∴灯杆的高度为6.1米.
答:灯杆的高度为6.1米.
故答案为:6.1.
本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出灯杆的高度,体现了方程的思想.
11、x>-1
【解析】
观察图象,找出直线y=-x+2在直线y=2x+m的下方时对应的x的取值范围即可.
【详解】
从图象可以看出,当时,直线y=-x+2在直线y=2x+m的下方,
所以的解集为:x>-1,
故答案为:.
本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出的值是解答本题的关键.
12、2
【解析】
证出OE是△ABC的中位线,由三角形中位线定理即可求得答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴OA=OC;
又∵点E是BC的中点,
∴OE是△ABC的中位线,
∴OE=AB=2,
故答案为:2.
此题考查了平行四边形的性质以及三角形中位线的定理;熟练掌握平行四边形的性质和三角形中位线定理是解题的关键.
13、x<1
【解析】
由一次函数y=kx+b的图象过点(1,1),且y随x的增大而减小,从而得出不等式kx+b﹣1>1的解集.
【详解】
由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,
∵一次函数y=kx+b的图象与y轴交于点(1,1),
∴当x<1时,有kx+b﹣1>1.
故答案为x<1
本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.
三、解答题(本大题共5个小题,共48分)
14、甲种水稻出苗更整齐
【解析】
根据平均数、方差的计算公式求出平均数和方差,再根据平均数、方差的意义,进行比较可得出结论.
【详解】
解:(厘米),
(厘米),
(厘米),
(厘米),
∵,
∴甲种水稻出苗更整齐.
本题考查平均数、方差的计算及意义,需熟记计算公式.
15、AB=5 周长20 面积24
【解析】根据菱形的对角线互相垂直平分的性质,运用勾股定理即可求得菱形的边长,从而得到
菱形的周长,再根据菱形的面积等于对角线乘积的一半即可计算出菱形的面积。
16、 (1) ;(2).
【解析】
分析:(1)由四边形ABCD是菱形,对角线AC与BD相交于O,由点F为AB的中点,得到OF=AB,即可得到结论;
(2)在Rt△AOB中,由30°角所对直角边等于斜边的一半,得到OB的长,然后由勾股定理求得OA的长,继而求得AC的长.
详解:(1)∵ABCD是菱形,∴AC⊥BD,
在RtΔAOB中,OF为斜边AB边上的中线,
∴OF=AB=3cm ;
(2)在Rt△AOB中, ∠BAO=30°, ∴OB=AB=3 ,
由勾股定理得:OA==3,∴AC=OA=6.
点睛:本题考查了菱形的性质、含30°角的直角三角形以及勾股定理.熟练掌握相关性质和定理是解题的关键.
17、20%
【解析】
根据题意,提取出有效信息,建立一元二次方程的模型进行解题即可.
【详解】
解:设这两年八年级社员人数的平均增长率为x,
依题意得,300(1+x)2=432
解得:x=0.2或x=-2.2(舍)
∴这两年八年级社员人数的平均增长率为20%.
本题考查了一元二次方程的实际应用,属于简单题,根据题意找到等量关系是解题关键,
18、(1);(2)①2x,x;②S(0<x≤).
【解析】
(1)根据勾股定理可得AC=,进而根据正方形对角线相等而且互相平分,可得AM的长;
(2)由中点定义可得AP=2PQ,AQ=PQ,然后由正方形与△ABD公共部分可得是以QM为高的等腰直角三角形,据此即可解答.
【详解】
解:(1)∵正方形ABCD的边长为4,
∴对角线AC4,
又∴AM2.
故答案为:2.
(2)①Q是AP的中点,设PQ=x,
∴AP=2PQ=2x,AQ=x.
故答案为:2x;x.
②如图:
∵以PQ为对角线作正方形,
∴∠GQM=∠FQM=45°
∵正方形ABCD对角线AC、BD交于点M,
∴∠FMQ=∠GMQ=90°,
∴△FMQ和△GMQ均为等腰直角三角形,
∴FM=QM=MG.
∵QM=AM﹣AQ=2x,
∴SFG•QM,
∴S,
∵依题意得:,
∴0<x≤2,
综上所述:S(0<x≤2),
本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角.解答本题要充分利用等腰直角三角形性质解答.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由黄金矩形的短边与长边的比为,可设黄金矩形的宽为x,列方程即可求出x的值.
【详解】
解:∵黄金矩形的短边与长边的比为,
∴设黄金矩形的宽为x,
则,
解得,x=﹣1,
故答案为:.
本题考查了黄金矩形的性质,解题关键是要知道黄金矩形的短边与长边的比为.
20、1或2
【解析】
当DF在CD右侧时,取BC中点H,连接FH交CD于M,连接DH,CD。可证△FDH≌△EDB,再证△CHM≌△DHM,推出MH⊥CD,由勾股定理可得FM,由中位线可得MH,进而可计算FH,由全等可得FH=BE。同理可求DF在CD左侧时,FH的值,进而求BE的值。
【详解】
如图当DF在CD右侧时,取BC中点H,连接FH交CD于M,连接DH,CD。
易证△BDH是等边三角形,DH=BD, ∠FDH=∠EDB ,DF=DE
∴△FDH≌△EDB
∴FH=BE,∠FHD=∠B=60°
在等边△BDH中∠DHB=60°
∴∠CHF=60°
∴MH=MH,∠CHM=∠MHD=60°,DH=CH,
∴△CHM≌△DHM
∴CM=DM,
∵ CM=DM,CH=BH
∴ MH//BD,
∵CD⊥AB
∴MH⊥CD
∴∠CMF=90°
∴
∴
∴
BE==1
同理可证,当DF在CD左侧时
BE==2
综上所诉,BE=1或2
灵活构造三角形全等,及中位线,勾股定理,等边三角形的性质是解题的关键。
21、1.
【解析】
试题解析:∵由题意可知,AQ是∠DAB的平分线,
∴∠DAQ=∠BAQ.
∵四边形ABCD是平行四边形,
∴CD∥AB,BC=AD=2,∠BAQ=∠DQA,
∴∠DAQ=∠DAQ,
∴△AQD是等腰三角形,
∴DQ=AD=2.
∵DQ=2QC,
∴QC=DQ=,
∴CD=DQ+CQ=2+=,
∴平行四边形ABCD周长=2(DC+AD)=2×(+2)=1.
故答案为1.
22、
【解析】
先通分,再把分子相加减即可.
【详解】
解:原式=
故答案为:
本题考查的是分式的加减,熟知异分母的分式相加减的法则是解答此题的关键.
23、10
【解析】
本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.
【详解】
如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.
连接OC,交AB于D点.连接OA.
∵尺的对边平行,光盘与外边缘相切,
∴OC⊥AB.
∴AD=4cm.
设半径为Rcm,则R2=42+(R−2)2,
解得R=5,
∴该光盘的直径是10cm.
故答案为:10.
此题考查了切线的性质及垂径定理,建立数学模型是关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析(2)6.8;7(3)乙组成绩比甲组稳定
【解析】
根据表格中的数据可以将条形统计图补充完整;
根据表格中的数据可以计算出a的值,求出乙组的中位数b的值;
本题答案不唯一、合理即可.
【详解】
解:如右图所示;
,
,
故答案为:,7;
第一、乙组的中位数高于甲组,说明乙组的成绩中等偏上的人数比甲组多;第二、乙组的方差比甲组小,说明乙组成绩比甲组稳定.
本题考查方差、中位数、众数、加权平均数、条形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
25、 (1)x>2;(2)(0,3)或(4,1).
【解析】
(1)依据直线l1:y1=x+b与直线l2:y2=x交于点C(2,2),即可得到当y1<y2时,x>2;
(2)分两种情况讨论,依据△OPC的面积为3,即可得到点P的坐标.
【详解】
解:(1)∵直线l1:y1=x+b与直线l2:y2=x交于点C(2,2),
∴当y1<y2时,x>2;
(2)将(2,2)代入y1=x+b,得b=3,
∴y1=x+3,
∴A(6,0),B(0,3),
设P(x,x+3),
则当x<2时,由×3×2×3×x=3,
解得x=0,
∴P(0,3);
当x>2时,由×6×2﹣×6×(x+3)=3,
解得x=4,
∴x+3=1,
∴P(4,1),
综上所述,点P的坐标为(0,3)或(4,1).
故答案为(1)x>2;(2)(0,3)或(4,1).
本题主要考查了一次函数图象上点的坐标特征以及一次函数的性质,设P(x,x+3),利用三角形的面积的和差关系列方程是解题的关键.
26、(1)甲先出发,早了3小时;乙先到达B地,早了3小时;(2)甲速为10千米/小时,乙速为40千米/小时;(3)y甲=10x,y乙=40x﹣1.
【解析】
(1)结合图象,依据点的坐标代表的意思,即可得出结论;
(2)由速度=路程÷时间,即可得出结论;
(3)根据待定系数法,可求出乙的函数表达式,结合甲的速度依据甲的图象过原点,可得出甲的函数表达式.
【详解】
解:(1)结合图象可知,甲先出发,早了3小时;乙先到达B地,早了3小时;
(2)甲的速度:80÷8=10km/h,
乙的速度:80÷(5-3)=40km/h.
(3)设y甲=kx,由图知:8k=80,k=10
∴y甲=10x;
设y乙=mx+n,由图知:
解得
∴y乙=40x﹣1
答:甲、乙在行驶过程中的路程与时间之间的函数关系式分别为:
y甲=10x,y乙=40x﹣1.
本题考查了一次函数中的相遇问题、用待定系数法求函数表达式,解题的关键是:(1)明白坐标系里点的坐标代表的意义;(2)知道速度=路程÷时间;(3)会用待定系数法求函数表达式.本题难度不大,属于基础题,做此类问题是,结合函数图象,找出点的坐标才能做对题.
题号
一
二
三
四
五
总分
得分
年龄
18
19
20
21
22
人数
1
x
y
2
2
编号
1
2
3
4
5
甲
12
13
14
15
16
乙
13
14
16
12
10
成绩个
4
5
6
7
8
9
甲组人
1
2
5
2
1
4
乙组人
1
1
4
5
2
2
统计量
平均数个
中位数
众数
方差
合格率
优秀率
甲组
a
6
6
乙组
b
7
相关试卷
这是一份2024-2025学年浙江省宁波市东钱湖九校九上数学开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年浙江省宁波市慈溪市九上数学开学预测试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年浙江省杭州市周浦中学数学九上开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。