2024-2025学年浙江省杭州余杭区数学九年级第一学期开学达标检测模拟试题【含答案】
展开
这是一份2024-2025学年浙江省杭州余杭区数学九年级第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如果成立,那么实数a的取值范围是( )
A.B.C.D.
2、(4分)计算的的结果是( )
A.B.C.4D.16
3、(4分)下列说法中错误的是( )
A.四个角相等的四边形是矩形B.四条边相等的四边形是正方形
C.对角线相等的菱形是正方形D.对角线垂直的矩形是正方形
4、(4分)把直线y=﹣2x向上平移后得到直线AB,若直线AB经过点(m,n),且2m+n=8,则直线AB的表达式为( )
A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣8
5、(4分)小明在学完一次函数时发现,可以运用画一次函数图象的方法求二元一次方程组的解.小明在同一平面直角坐标系中作出相应的两个一次函数的图象如图所示.则小明所解的二元一次方程组是( )
A.B.C.D.
6、(4分)赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是( )
A.B.
C.D.
7、(4分)若分式有意义,则实数的取值范围是( )
A.x=2B.x=-2C.x≠2D.x≠-2
8、(4分)如图,四边形OABC是平行四边形,对角线OB在y轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A,C作x轴的垂线垂足分别为M和N,则有以下的结论:①ON=OM;②△OMA≌△ONC;③阴影部分面积是(k1+k2);④四边形OABC是菱形,则图中曲线关于y轴对称其中正确的结论是( )
A.①②④B.②③C.①③④D.①④
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图所示,一次函数的图象与x轴的交点为,则下列说法:
①y的值随x的值的增大而增大;
②b>0;
③关于x的方程的解为.
其中说法正确的有______只写序号
10、(4分)等边三角形的边长是4,则高AD_________ (结果精确到0.1)
11、(4分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处,点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②S△ABG=S△FGH;③△DEF∽△ABG;④AG+DF=FG.其中正确的是_____.(把所有正确结论的序号都选上)
12、(4分)将直线向上平移个单位,得到直线_______。
13、(4分)对于两个不相等的实数a、b,定义一种新的运算如下:(a+b>0),如:3*2= =,那么7*(6*3)=__.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,中,是边上一点,,,,点,分别是,边上的动点,且始终保持.
(1)求的长;
(2)若四边形为平行四边形时,求的周长;
(3)将沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,求线段的长.
15、(8分)如图,△ABC中,∠ACB=Rt∠,AB=,BC=,求斜边AB上的高CD.
16、(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为.
(1)画出关于轴的对称图形,并写出其顶点坐标;
(2)画出将先向下平移4个单位,再向右平移3单位得到的,并写出其顶点坐标.
17、(10分)已知直线与轴,轴分别交于点,将对折,使点的对称点落在直线上,折痕交轴于点.
(1)求点的坐标;
(2)若已知第四象限内的点,在直线上是否存在点,使得四边形为平行四边形?若存在,求出点的坐标;若不存在,说明理由;
(3)设经过点且与轴垂直的直线与直线的交点为为线段上一点,求的取值范围.
18、(10分)已知关于x的一元二次方程x2+mx+2n=0,其中m、n是常数.
(1)若m=4,n=2,请求出方程的根;
(2)若m=n+3,试判断该一元二次方程根的情况.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)观察式子,,,……,根据你发现的规律可知,第个式子为______.
20、(4分)一组数据1,2,3,x,5的平均数是3,则该组数据的方差是_____.
21、(4分)如图,在平面直角坐标系中,将正方形绕点逆时针旋转后得到正方形,依此方式,绕点连续旋转2019次得到正方形,如果点的坐标为(1,0),那么点的坐标为________.
22、(4分)在菱形ABCD中,对角线AC=30,BD=60,则菱形ABCD的面积为____________.
23、(4分)某企业两年前创办时的资金为1000万元,现在已有资金1210万元,设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:______.
二、解答题(本大题共3个小题,共30分)
24、(8分)在进行二次根式化简时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:,,;以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:
(1)请用不同的方法化简;(2)化简:.
25、(10分)利用对称性可设计出美丽的图案.在边长为1的方格纸中,有如图所示的四边形(顶点都在格点上).
(1)先作出该四边形关于直线成轴对称的图形,再作出你所作的图形连同原四边形绕0点按顺时针方向旋转90后的图形;
(2)完成上述设计后,整个图案的面积等于_________.
26、(12分)何老师安排喜欢探究问题的小明解决某个问题前,先让小明看了一个有解答过程的例题.
例:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0
∴m2+2mn+n2+n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0∴m=﹣3,n=3
为什么要对2n2进行了拆项呢?
聪明的小明理解了例题解决问题的方法,很快解决了下面两个问题.相信你也能很好的解决下面的这两个问题,请写出你的解题过程..
解决问题:
(1)若x2﹣4xy+5y2+2y+1=0,求xy的值;
(2)已知a、b、c是△ABC的三边长,满足a2+b2=10a+12b﹣61,c是△ABC中最短边的边长,且c为整数,那么c可能是哪几个数?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
即
故选B.
2、C
【解析】
根据算术平方根和平方根进行计算即可
【详解】
=4
故选:C
此题考查算术平方根和平方根,掌握运算法则是解题关键
3、B
【解析】
根据矩形和正方形的性质和判定进行分析即可.
【详解】
A、四个角相等的四边形则每个角为90°,所以是矩形,该说法正确,不符合题意;
B、四条边相等的四边形是菱形,不一定是正方形,该说法错误,符合题意;
C、对角线相等的菱形是正方形,该说法正确,不符合题意;
D、对角线垂直的矩形是正方形,该说法正确,不符合题意.
故选B.
考核知识点:正方形和矩形的判定.理解定理是关键.
4、B
【解析】
由题意知,直线AB的斜率,又已知直线AB上的一点(m,n),所以用直线的点斜式方程y﹣y0=k(x﹣x0)求得解析式即可.
【详解】
解:∵直线AB是直线y=﹣2x平移后得到的,
∴直线AB的k是﹣2(直线平移后,其斜率不变)
∴设直线AB的方程为y﹣y0=﹣2(x﹣x0)①
把点(m,n)代入①并整理,得
y=﹣2x+(2m+n)②
∵2m+n=1③
把③代入②,解得y=﹣2x+1,
即直线AB的解析式为y=﹣2x+1.
故选:B.
本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,斜率不变这一性质,再根据题意中的已知条件,来确定用哪种方程(点斜式、斜截式、两点式等)来解答.
5、C
【解析】
先利用待定系数求出两函数解析式,由于函数图象交点坐标为两函数解析式组成的方程组的解,则可判断所解的二元一次方程组为两解析式所组成的方程组.
【详解】
解:设过点(1,1)和(0,-1)的直线解析式为y=kx+b,
则,
解得,
所以直线解析式为y=2x-1;
设过点(1,1)和(0,2)的直线解析式为y=mx+n,
则,
解得,
所以直线解析式为y=-x+2,
所以所解的二元一次方程组为.
故选C.
本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.
6、C
【解析】
设读前一半时,平均每天读x页,等量关系为:读前一半用的时间+读后一半用的时间=14,据此列方程即可.
【详解】
解:设读前一半时,平均每天读x页,则读前一半用的时间为:,读后一半用的时间为:.
由题意得,+=14,
故选:C.
本题考查了由实际问题列分式方程,解答本题的关键是读懂题意,设出未知数,找出等量关系,列出分式方程.
7、D
【解析】
根据分式有意义分母不能为零即可解答.
【详解】
∵分式有意义,
∴x+2≠0,
∴x≠-2.
故选:D.
本题考查了分式有意义的条件,分式分母不能为零是解题的关键点.
8、D
【解析】
先判断出CE=ON,AD=OM,再判断出CE=AD,即可判断出①正确;由于四边形OABC是平行四边形,所以OA不一定等于OC,即可得出②错误;先求出三角形COM的面积,再求出三角形AOM的面积求和即可判断出③错误,根据菱形的性质判断出OB⊥AC,OB与AC互相平分即可得出④正确.
【详解】
解:如图,过点A作AD⊥y轴于D,过点C作CE⊥y轴E,
∵AM⊥x轴,CM⊥x轴,OB⊥MN,
∴四边形ONCE和四边形OMAD是矩形,
∴ON=CE,OM=AD,
∵OB是▱OABC的对角线,
∴△BOC≌△OBA,
∴S△BOC=S△OBA,
∵S△BOC=OB×CE,S△BOA=OB×AD,
∴CE=AD,
∴ON=OM,故①正确;
在Rt△CON和Rt△AOM中,ON=OM,
∵四边形OABC是平行四边形,
∴OA与OC不一定相等,
∴△CON与△AOM不一定全等,故②错误;
∵第二象限的点C在双曲线y=上,
∴S△CON=|k1|=-k1,
∵第一象限的点A在双曲线y=上,
S△AOM=|k2|=k2,
∴S阴影=S△CON+S△AOM=-k1+k2=(k2-k1),
故③错误;
∵四边形OABC是菱形,
∴AC⊥OB,AC与OB互相平分,
∴点A和点C的纵坐标相等,点A与点C的横坐标互为相反数,
∴点A与点C关于y轴对称,故④正确,
∴正确的有①④,
故选:D.
本题是反比例函数综合题,主要考查了反比例函数的性质,平行四边形的性质,全等三角形的判定和性质,菱形的性质,判断出CE=AD是解本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
一次函数及其应用:用函数的观点看方程(组)或不等式.
【详解】
由图象得:
①的值随的值的增大而增大;
②;
③关于的方程的解为.
故答案为:①②③.
本题考查了一次函数与一元一次方程,利用一次函数的性质、一次函数与一元一次方程的关系是解题关键.
10、3.1
【解析】
根据等边三角形的性质及勾股定理进行计算即可.
【详解】
如图,三角形ABC为等边三角形,AD⊥BC,AB=4,
∵三角形ABC为等边三角形,AD⊥BC,
∴BD=CD=2,
在中,.
故答案为:3.1.
本题考查等边三角形的性质和勾股定理,掌握“三线合一”的性质及勾股定理是解题关键.
11、①②④.
【解析】
利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到x2+42=(8-x)2,解得x=3,所以AG=3,GF=5,于是可对②④进行判断;接着证明△ABF∽△DFE,利用相似比得到,而,所以,所以△DEF与△ABG不相似,于是可对③进行判断.
【详解】
解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,
将△ABG沿BG折叠,点A恰落在线段BF上的点H处,
∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,
∴∠EBG=∠EBF+∠FBG=∠CBF+∠ABF=∠ABC=45°,所以①正确;
在Rt△ABF中,AF===8,
∴DF=AD﹣AF=10﹣8=2,
设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,
在Rt△GFH中,
∵GH2+HF2=GF2,
∴x2+42=(8﹣x)2,解得x=3,
∴GF=5,
∴AG+DF=FG=5,所以④正确;
∵△BCE沿BE折叠,点C恰落在边AD上的点F处,
∴∠BFE=∠C=90°,
∴∠EFD+∠AFB=90°,
而∠AFB+∠ABF=90°,
∴∠ABF=∠EFD,
∴△ABF∽△DFE,
∴=,
∴===,
而==2,
∴≠,
∴△DEF与△ABG不相似;所以③错误.
∵S△ABG=×6×3=9,S△GHF=×3×4=6,
∴S△ABG=S△FGH,所以②正确.
故答案是:①②④.
本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.
12、
【解析】
根据平移k不变,b值加减即可得出答案.
【详解】
平移后解析式为:y=2x−1+4=2x+3,
故答案为:y=2x+3
此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质
13、
【解析】
试题分析:∵,,
∴,
即7*(6*3)=,
考点:算术平方根.
三、解答题(本大题共5个小题,共48分)
14、(1);(2);(3)BP=或3或.
【解析】
(1)先根据题意推出△ABE是等腰直角三角形,再根据勾股定理计算即可.
(2)首先要推出△CPQ是等腰直角三角形,再根据已知推出各边的长度,然后相加即可.
(3)首先证明△BPE∽△CQP,然后分三种情况讨论,分别求解,即可解决问题.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AB=CD,
∵BE=CD=3,
∴AB=BE=3,
又∵∠A=45°,
∴∠BEA=∠A=45°,∠ABE=90°,
根据勾股定理得AE==;
(2)∵四边形ABCD是平行四边形,
∴AB=CD,∠A=∠C=45°,
又∵四边形ABPE是平行四边形,
∴BP∥AB,且AE=BP,
∴BP∥CD,
∴ED=CP=,
∵∠EPQ=45°,
∴∠PQC=∠EPQ=45°,
∴∠PQC=∠C=45°,∠QPC=90°,
∴CP=PQ=,QC=2,
∴△CPQ的周长=2+2;
(3)解:如图,作BH⊥AE于H,连接BE.
∵四边形ABCD是平行四边形,
∴AB=CD=3,AD=BC=AE+ED=,∠A=∠C=45°,
∴AH=BH=,HE=AD-AH-DE=
∴BH=EH,
∴∠EBH=∠HEB=∠EBC=45°,
∴∠EBP=∠C=45°,
∵∠BPQ=∠EPB+∠EPQ=∠C+∠PQC,∠EPQ=∠C,
∴∠EPB=∠PQC,
∴△BPE∽△CQP.
①当QP=QC时,则BP=PE,
∴∠EBP=∠BEP=45°,则∠BPE=90°,
∴四边形BPEF是矩形,
BP=EF=,
②当CP=CQ时,则BP=BE=3,
③当CP=PQ时,则BE=PE=3,∠BEP=90°,
∴△BPE为等腰三角形,
∴BP2=BE2+PE2,
∴BP=,
综上:BP=或3或.
本题利用平行四边形的性质求解,其中运用了分类讨论的思想,这是解题关键.
15、CD=
【解析】
先根据勾股定理求出AC,再根据等面积法即可求得结果.
【详解】
解:由题意得,
,
,
解得CD=
本题考查的是二次根式的应用,勾股定理的应用,解答本题的关键是掌握好利用等面积法求直角三角形的斜边上的高.
16、(1)图详见解析,;(2)图详见解析,
【解析】
(1)分别作出,,的对应点,,即可.
(2)分别作出,,的对应点,,即可.
【详解】
解:(1)△如图所示.,,;
(2)△如图所示.,,.
本题考查轴对称变换,平移变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
17、(1)C(3,0);(2)不存在;(3)0≤|QA−QO|≤1.
【解析】
(1)由勾股定理得:CA2=CE2+AE2,即(8−a)2=a2+12,即可求解;
(2)当四边形OPAD为平行四边形时,根据OA的中点即为PD的中点即可求解;
(3)当点Q为AO的垂直平分线与直线BC的交点时,QO=QA,则|QA−QO|=0,当点Q在点B处时,|QA−QO|有最大值,即可求解.
【详解】
解:(1)连接CE,则CE⊥AB,
与x轴,y轴分别相交于点A,B,
则点A、B的坐标分别为:(8,0)、(0,6),则AB=10,
设:OC=a,则CE=a,BE=OB=6,
AE=10−6=1,CA=8−a,
由勾股定理得:CA2=CE2+AE2,即(8−a)2=a2+12,
解得a=3,
故点C(3,0);
(2)不存在,理由:
将点B、C的坐标代入一次函数表达式y=kx+b并解得:
直线BC的表达式为:y=−2x+6,
设点P(m,n),当四边形OPAD为平行四边形时,
OA的中点即为PD的中点,
即:m+=8,n−=0,
解得:m=,n=,
当x=时,y=−2x+6=1,
故点P不在直线BC上,
即在直线BC上不存在点P,使得四边形OPAD为平行四边形;
(3)当x=时,y=−2x+6=−5,故点F(,−5),
当点Q为AO的垂直平分线与直线BC的交点时,QO=QA,
则|QA−QO|=0,
当点Q在点B处时,|QA−QO|有最大值,
此时:点A(8,0)、点O(0,0)、点Q(0,6),
则AQ=10,QO=6,|QA−QO|=1,
故|QA−QO|的取值范围为:0≤|QA−QO|≤1.
本题考查的是一次函数综合运用,涉及到中垂线和平行四边形性质、勾股定理得运用等,其中(3),求解|QA−QO|的取值范围,需要在线段BF取特殊值来验证求解.
18、(1)x1=x2=﹣2;(2)当m=n+3时,该一元二次方程有两个不相等的实数根.
【解析】
(1)把m、n的值代入方程,求出方程的解即可;
(2)先把m=n+3代入方程,再求出△的值,再判断即可.
【详解】
(1)把m=4,n=2代入方程x2+mx+2n=0得:x2+4x+4=0,
解得:x1=x2=﹣2;
即方程的根是x1=x2=﹣2;
(2)∵m=n+3,方程为x2+mx+2n=0,
∴x2+(n+3)x+2n=0,
△=(n+3)2﹣4×1×2n=n2﹣2n+9=(n﹣1)2+8,
∵不论m为何值,(n﹣1)2+8>0,
∴△>0,
所以当m=n+3时,该一元二次方程有两个不相等的实数根.
本题考查了一元二次方程的解法,以及一元二次方程根的判别式,当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆
相关试卷
这是一份2024-2025学年浙江省杭州市富阳区九年级数学第一学期开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江西省南昌市数学九年级第一学期开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年杭州市建兰中学九年级数学第一学期开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。