2024-2025学年四川省达州通川区五校联考数学九年级第一学期开学调研模拟试题【含答案】
展开
这是一份2024-2025学年四川省达州通川区五校联考数学九年级第一学期开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的面积是( )
A.24B.30C.40D.48
2、(4分)下列分解因式正确的是( )
A.-a+a3=-a(1+a2)B.2a-4b+2=2(a-2b)
C.a2-4=(a-2)2D.a2-2a+1=(a-1)2
3、(4分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OD,∠OAD=50°,则∠OAB的度数为( )
A.40°B.50°C.60°D.70°
4、(4分)在平面直角坐标系中,点位于( )
A.第一象限B.第二象限C.第三象限D.第四象限
5、(4分)下列计算正确的是( )
A.+=B.÷=2C.()-1=D.(-1)2=2
6、(4分)已知P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x﹣1的图象上的两个点,则y1,y2的大小关系是( )
A.y1=y2B.y1<y2C.y1>y2D.不能确定
7、(4分)下列条件中能构成直角三角形的是( )
A.a=3,b=4,c=6B.a=5,b=6,c=7
C.a=6,b=8,c=9D.a=5,b=12,c=13
8、(4分)图中两直线L1,L2的交点坐标可以看作方程组( )的解.
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若正多边形的一个外角等于36°,那么这个正多边形的边数是________.
10、(4分)如图,在矩形中,点为射线上一动点,将沿折叠,得到若恰好落在射线上,则的长为________.
11、(4分)若一个直角三角形的其中两条边长分别为6和8,则第三边长为_____.
12、(4分)小明在计算内角和时,不小心漏掉了一个内角,其和为1160,则漏掉的那个内角的度数是_____________.
13、(4分)反比例函数 y=的图象同时过 A(-2,a)、B(b,-3)两点,则(a-b)2=__.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在白纸上画两条长度均为且夹角为的线段、,然后你把一支长度也为的铅笔放在线段上,将这支铅笔以线段上的一点为旋转中心旋转顺时针旋转一周.
图 ① 图 ②
(1)若与重合,当旋转角为______时,这支铅笔与线段、围成的三角形是等腰三角形.
(2)点从逐渐向移动,记:
①若,当旋转角为、______、______、______、、______时这支铅笔与线段、共围成6个等腰三角形.
②当这支铅笔与线段、正好围成5个等腰三角形时,求的取值范围.
③当这支铅笔与线段、正好围成3个等腰三角形时,直接写出的取值范围.
15、(8分)已知:如图1,Rt△ABC中,∠BAC=90°,点D是线段AC的中点,连接BD并延长至点E,使BE=2BD.连接AE,CE.
(1)求证:四边形ABCE是平行四边形;
(2)如图2所示,将三角板顶点M放在AE边上,两条直角边分别过点B和点C,若∠MEC=∠EMC,BM交AC于点N.求证:△ABN≌△MCN.
16、(8分)已知:如图,E,F为□ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.
17、(10分)解分式方程:+1.
18、(10分)如图,一次函数的图象分别与x轴,y轴交于A、B两点,正比例函数的图象与交于点.
(1)求m的值及的解析式;
(2)求得的值为______;
(3)一次函数的图象为,且,,可以围成三角形,直接写出k的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示,△ABC中,CD⊥AB于D,E是AC的中点,若DE=5,则AC的长等于_____.
20、(4分)如图,在平面直角坐标系xOy中,有两点A(2,4),B(4,0),以原点O为位似中心,把△OAB缩小得到△OA'B'.若B'的坐标为(2,0),则点A'的坐标为_____.
21、(4分)直线与轴的交点坐标___________
22、(4分)由作图可知直线与互相平行,则方程组的解的情况为______.
23、(4分)正六边形的每个内角等于______________°.
二、解答题(本大题共3个小题,共30分)
24、(8分)中央电视台举办的“中国诗词大会”节目受到中学生的广泛关注.某中学为了了解学生对观看“中国诗词大会”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制出如图所示的两幅统计图.在条形图中,从左向右依次为A类(非常喜欢),B类(较喜欢)C类(一般),D类(不喜欢).请结合两幅统计图,回答下列问题:
(1)求本次抽样调查的人数;
(2)请补全两幅统计图;
(3)若该校有3000名学生,请你估计观看“中国诗词大会”节目较喜欢的学生人数.
25、(10分)已知四边形ABCD是正方形,△ADE是等边三角形,求∠BEC的度数.
26、(12分)(1)计算:;
(2)当时,求代数式的值
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据菱形的面积等于对角线乘积的一半即可解决问题.
【详解】
∵四边形ABCD是菱形,AC=6,BD=8,
∴菱形ABCD的面积=⋅AC⋅BD=×6×8=24.
故选A.
此题考查菱形的性质,解题关键在于计算公式.
2、D
【解析】
根据因式分解的定义进行分析.
【详解】
A、-a+a3=-a(1-a2)=-a(1+a)(1-a),故本选项错误;
B、2a-4b+2=2(a-2b+1),故本选项错误;
C、a2-4=(a-2)(a+2),故本选项错误;
D、a2-2a+1=(a-1)2,故本选项正确.
故选D.
考核知识点:因式分解.
3、A
【解析】
首先根据题意得出平行四边形ABCD是矩形,进而求出∠OAB的度数.
【详解】
∵平行四边形ABCD的对角线AC,BD相交于点O,OA=OD,
∴四边形ABCD是矩形,
∵∠OAD=50°,
∴∠OAB=40°.
故选:A.
本题主要考查了平行四边形的性质,矩形的判定与性质,解题的关键是判断出四边形ABCD是矩形,此题难度不大.
4、B
【解析】
应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.
【详解】
∵点P(−1,2)的横坐标−10,
∴点P在第二象限。
故选:B.
此题考查点的坐标,难度不大
5、B
【解析】
解:与不能合并,所以A选项错误;
B.原式==2,所以B选项正确;
C.原式=,所以C选项错误;
D.原式==,所以D选项错误.
故选B.
6、C
【解析】
根据P1(-3,y1),P1(1,y1)是一次函数y=-x-1的图象上的两个点,由-3<1,结合一次函数y=-x-1在定义域内是单调递减函数,判断出y1,y1的大小关系即可.
【详解】
∵P1(-3,y1),P1(1,y1)是一次函数y=-x-1的图象上的两个点,且-3<1,
∴y1>y1.
故选C.
此题主要考查了一次函数图象上点的坐标特征,要熟练掌握.
7、D
【解析】
由勾股定理的逆定理,判定的是直角三角形.
【详解】
A. 32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
B. 52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
C. 62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
D. 52+122=132,故符合勾股定理的逆定理,能组成直角三角形,故正确.
故选D.
本题考查勾股定理的逆定理,如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形.
8、B
【解析】
分析:
根据图中信息分别求出直线l1和l2的解析式即可作出判断.
详解:
设直线l1和l2的解析式分别为,根据图中信息可得:
, ,
解得: ,,
∴l1和l2的解析式分别为,即,,
∴直线l1和l2的交点坐标可以看作方程 的交点坐标.
故选B.
点睛:根据图象中的信息由待定系数法求得直线l1和l2的解析式是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、十
【解析】
根据正多边形的外角和为360°,除以每个外角的度数即可知.
【详解】
解:∵正多边形的外角和为360°,
∴正多边形的边数为,
故答案为:十.
本题考查了正多边形的外角与边数的关系,解题的关键是熟知正多边形外角和等于每个外角的度数与边数的乘积.
10、或15
【解析】
如图1,根据折叠的性质得到AB=A=5,E=BE,根据勾股定理求出BE,如图2,根据折叠的性质得到A=AB=5,求得AB=BF=5, 根据勾股定理得到CF=4根据相似三角形的性质列方程即可得到结论.
【详解】
∵四边形ABCD是矩形,
∴AD=BC=3,CD=AB=5,
如图1,由折叠得AB=A=5,E=BE,
∴,
∴,
在Rt△中, ,
∴,
解得BE=;
如图2,由折叠得AB=A=5,
∵CD∥AB,
∴∠=∠,
∵,
∴,
∵AE垂直平分,
∴BF=AB=5,
∴,
∵CF∥AB,
∴△CEF∽△ABE,
∴,
∴,
∴BE=15,
故答案为:或15.
此题考查矩形的性质,折叠的性质,勾股定理,相似三角形的判定及性质,根据折叠的要求正确画出符合题意的图形进行解答是解题的关键.
11、10或2
【解析】
本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.
【详解】
设第三边为x,
(1)若8是直角边,则第三边x是斜边,由勾股定理得,62+82=x2解得:x=10,
(2)若8是斜边,则第三边x为直角边,由勾股定理得,62+x2=82,解得.
故第三边长为10或.
故答案为:10或.
本题考查了利用勾股定理解直角三角形的能力,当已知条件中明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.
12、100°
【解析】
根据n边形的内角和是(n-2)•180°,少计算了一个内角,结果得1160,可以解方程(n-2)•180°≥1160,由于每一个内角应大于0°而小于180度,则多边形的边数n一定是最小的整数值,从而求出多边形的边数,内角和,进而求出少计算的内角.
【详解】
解:设多边形的边数是n.
依题意有(n-2)•180°≥1160°,
解得:
则多边形的边数n=9;
九边形的内角和是(9-2)•180=1260度;
则未计算的内角的大小为1260-1160°=100°.
故答案为:100°
本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.
13、
【解析】
先将A(-2,a)、B(b,-3)两点的坐标代入反比例函数的解析式y=,求出a、b的值,再代入(a-b)2,计算即可.
【详解】
∵反比例函数y=的图象同时过A(−2,a)、B(b,−3)两点,
∴a= =−1,b= = ,
∴(a−b) 2=(−1+) 2= .
故答案为.
此题考查反比例函数图象上点的坐标特征,解题关键在于把已知点代入解析式
三、解答题(本大题共5个小题,共48分)
14、(1)或;(2)①、、、;②;③
【解析】
(1)运用旋转的性质作答即可;
(2)①对旋转的各个位置进行讨论,即可完成解答; 当旋转,,时,这段与、三次围成等腰三角形,这样正好围成6个等于三角形分类讨论即可;
【详解】
解:(1)当已知的30°角为底角,那么旋转30°即可;
当已知的30°角为顶角,那么旋转75°即可;
故答案为或.
(2)①t=1,即P为AB的中点:
当已知的30°角为底角,那么30°、120°、210°、300°即可;
当已知的30°角为顶角,那么旋转75°、255°即可;
故答案为:、、、
②如图1,位于中点时,分成了、两段,以点为旋转中心将其旋转,,时,这段与、三次围成等腰三角形,当旋转,,时这段与、三次围成等腰三角形,这样正好围成6个等于三角形,此时.
如图2,当旋转时,当(起初与重合的)正好与等长,即时,当旋转,,时较长的这段与、三次围成等腰三角形,当旋转,时较短的这段与、两次围成等腰三角形,
如图,,,,令,则,,易知,,,
此时可求得,,,
故旋转形成5个等腰三角形时,.
③如图:
当时,3个 , 当时,4个 ,
可求得.
注:时可这样求解,如下图
在上取,使,则,,令,
则,,,,
本题属于一道旋转的几何综合题,难度较大,解答的关键在于对旋转的不同位置的分类讨论.
15、(1)详见解析;(2)详见解析;
【解析】
(1)根据平行四边形的判定定理证明即可.
(2)根据平行四边形的性质和已知条件,利用角角边即可证明三角形的全等.
【详解】
解:(1)∵点D是线段AC的中点,BE=2BD,
∴AD=CD,DE=BD,
∴四边形ABCE是平行四边形.
(2)∵四边形ABCE是平行四边形,
∴CE=AB,
∵∠MEC=∠EMC,
∴CM=AB,
在△ABN和△MCN中,
,
∴△ABN≌△MCN(AAS);
本题主要考查平行四边形的性质,难度系数较小,应当熟练掌握.
16、证明见解析.
【解析】
利用SAS证明△AEB≌△CFD,再根据全等三角形的对应边相等即可得.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC,
∴∠BAE=∠DCF,
在△AEB和△CFD中,,
∴△AEB≌△CFD(SAS),
∴BE=DF.
本题考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握相关的性质是解题的关键.
17、x=.
【解析】
按照解分式方程的步骤解方程即可.
【详解】
解:
方程两边都乘以得:
解得:
检验:当时,2(x﹣1)≠0,
所以是原方程的解,
即原方程的解为.
本题考查分式方程注意检验.
18、 (1);;(2);(3)且且.
【解析】
(1)由求出点C坐标,待定系数法可得的解析式;
(2)分别求出的面积即可;
(3) 或过点C时围不成三角形,由此可知k的取值范围.
【详解】
解:(1)∵点在一次函数的图象上
∴把代入得,解得
设的解析式为,将点代入得,解得
∴的解析式为
(2) 时,,所以,即,由可知点C到x轴的距离为,到y轴的距离为.
(3)由题意可得或过点C时围不成三角形
当时,,当时,,当过点C时,将点C代入得,解得
所以当,,可以围成三角形时k的取值范围为且且.
本题考查了一次函数,包括待定系数法求解析式及函数图像围成三角形的面积,正确理解题意,做到数形结合是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据直角三角形斜边上的中线是斜边的一半可以解答本题.
【详解】
∵△ABC中,CD⊥AB于D,E是AC的中点,
∴∠CDA=90°,△ADC是直角三角形,
∴AC=2DE,
∵DE=5,
∴AC=1,
故答案为:1.
本题考查直角三角形斜边上的中线,解答本题的关键是明确题意,利用数形结合的思想解答.
20、(1,2)
【解析】
根据位似变换的性质,坐标与图形性质计算.
【详解】
点B的坐标为(4,0),以原点O为位似中心,把△OAB缩小得到△OA'B',B'的坐标为(2,0),
∴以原点O为位似中心,把△OAB缩小,得到△OA'B',
∵点A的坐标为(2,4),
∴点A'的坐标为(2×,4×),即(1,2),
故答案是:(1,2).
考查的是位似变换,坐标与图形性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
21、(0,-3)
【解析】
求出当x=0时,y的值,由此即可得出直线与y轴的交点坐标.
【详解】
解:由题意得:当x=0时,y=2×0-3=-3,
即直线与y轴交点坐标为(0,-3),
故答案为(0,-3).
本题主要考查一次函数与坐标轴的交点,比较简单,令x=0即可.
22、无解
【解析】
二元一次方程组的解,就是两个函数图象的交点坐标,当两函数图象平行时,两个函数无交点,因此解析式所组成的方程组无解.
【详解】
∵直线y=-5x+2与y=-5x-3互相平行,
∴方程组无解,
故答案为:无解.
此题主要考查了一次函数与二元一次方程组的关系,关键是掌握二元一次方程组的解,就是两个函数图象的交点.
23、120
【解析】
试题解析:六边形的内角和为:(6-2)×180°=720°,
∴正六边形的每个内角为:=120°.
考点:多边形的内角与外角.
二、解答题(本大题共3个小题,共30分)
24、(1)100(人);(2)详见解析;(3)1050人.
【解析】
(1)用A类的人数除以它所占的百分比,即可得本次抽样调查的人数;
(2)分别计算出D类的人数为:100﹣20﹣35﹣100×19%=26(人),D类所占的百分比为:26÷100×100%=26%,B类所占的百分比为:35÷100×100%=35%,即可补全统计图;
(3)用3000乘以样本中观看“中国诗词大会”节目较喜欢的学生人数所占的百分比,即可解答.
【详解】
解:(1)本次抽样调查的人数为:20÷20%=100(人);
(2)D类的人数为:100﹣20﹣35﹣100×19%=26(人),
D类所占的百分比为:26÷100×100%=26%,
B类所占的百分比为:35÷100×100%=35%,
如图所示:
(3)3000×35%=1050(人).
观看“中国诗词大会”节目较喜欢的学生人数为1050人.
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体的思想.
25、30°或者150°.
【解析】
试题分析:分当等边△ADE在正方形ABCD外部时(如图①)和当等边△ADE在正方形ABCD内部时(如图②)两种情况求解.
试题解析:
(1)当等边三角形ADE在正方形ABCD外部时,如图①所示.
∵AB=AD=AE,∠BAE=90°+60°=150°,
∴∠AEB=(180°-150°)÷2=15°.
同理,∠DEC=15°.∴∠BEC=60°-15°-15°=30°.
(2)当等边三角形ADE在正方形ABCD内部时,如图②所示.
∵AB=AD=AE,∠BAE=90°-60°=30°,
∴∠AEB=(180°-30°)÷2=75°.
同理,∠DEC=75°.∴∠BEC=360°-75°×2-60°=150°.
26、(1);(2)
【解析】
(1)根据题意先化简二次根式,再计算乘法,最后合并同类二次根式即可得;
(2)由题意分别将x、y的值代入原式=(x+y)(x-y)+xy计算即可求出答案.
【详解】
解:
当时,
可得.
本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024-2025学年四川省达州市达川区九上数学开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖北省天门市六校数学九年级第一学期开学调研模拟试题【含答案】,共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份四川省达州市通川区2023-2024学年数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。