2024-2025学年四川省成都市武侯区西蜀实验学校数学九上开学综合测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,△ABC顶点C的坐标是(1,-3),过点C作AB边上的高线CD,则垂足D点坐标为( )
A.(1,0)B.(0,1)
C.(-3,0)D.(0,-3)
2、(4分)一次函数的图象如图所示,则不等式的解集是( )
A.B.C.D.
3、(4分)计算的结果是( )
A.2B.﹣2C.±2D.±4
4、(4分)如图,长方形的高为,底面长为 ,宽为,蚂蚁沿长方体表面,从点到(点 见图中黑圆点)的最短距离是( )
A.B.C.D.
5、(4分)函数的图像经过一、二、四象限,则的取值范围是
A.B.C.D.
6、(4分)某校男子足球队年龄分布条形图如图所示,该球队年龄的众数和中位数分别是
A.B.
C.D.
7、(4分)小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为( )
A.B.C.D.
8、(4分)教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、1.应该选( )参加.
A.甲B.乙C.甲、乙都可以D.无法确定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知:在矩形ABCD中,AD=2AB,点E在直线AD上,连接BE,CE,若BE=AD,则∠BEC的大小为_____度.
10、(4分)分解因式:______.
11、(4分)分式的最简公分母为_____.
12、(4分)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去记正方形ABCD的边为,按上述方法所作的正方形的边长依次为、、、,根据以上规律写出的表达式______.
13、(4分)现有甲、乙两支足球队,每支球队队员身高的平均数均为1.85米,方差分别为,,则身高较整齐的球队是__队
三、解答题(本大题共5个小题,共48分)
14、(12分)解不等式组:(要求:利用数轴解不等式组)
15、(8分)如图,已知互余,∠2与∠3互补,.求的度数.
16、(8分)某公司计划从两家皮具生产能力相近的制造厂选择一家来承担外销业务,这两家厂生产的皮具款式和材料都符合要求,因此只需要检测皮具质量的克数是否稳定,现从两家提供的样品中各抽取了6件进行检查,超过标准质量部分记为正数,不足部分记为负数,若该皮具的标准质量为500克,测得它们质量如下(单位:g)
(1)分别计算甲、乙两厂抽样检测的皮具总质量各是多少克?
(2)通过计算,你认为哪一家生产皮具的质量比较稳定?
17、(10分)如图,已知二次函数的图象顶点在轴上,且,与一次函数的图象交于轴上一点和另一交点.
求抛物线的解析式;
点为线段上一点,过点作轴,垂足为,交抛物线于点,请求出线段的最大值.
18、(10分)计算与化简:
(1)化简
(2)化简,
(3)计算
(4)计算
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)关于x的一元二次方程x2﹣2x+k﹣1=0没有实数根,则k的取值范围是_____.
20、(4分)已知三角形两边长分别为2,3,那么第三边的长可以是___________.
21、(4分)因式分解:= .
22、(4分)如图,函数y1=﹣2x和y2=ax+3的图象相交于点A(﹣1,2),则关于x的不等式﹣2x>ax+3的解集是_____
23、(4分)几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设原参加旅游的同学有x人,则根据题意可列方程___________________________ .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,AC为矩形ABCD的对角线,DE⊥AC于E,BF⊥AC于F。
求证:DE=BF
25、(10分)解不等式组并将解集在数轴上表示出来.
26、(12分)如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.连接AF、BD.
求证:四边形ABDF是平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据在同一平面内,垂直于同一直线的两直线平行可得CD∥y轴,再根据平行于y轴上的点的横坐标相同解答.
【详解】
如图,
∵CD⊥x轴,
∴CD∥y轴,
∵点C的坐标是(1,-3),
∴点D的横坐标为1,
∵点D在x轴上,
∴点D的纵坐标为0,
∴点D的坐标为(1,0).
故选:A.
本题考查了坐标与图形性质,比较简单,作出图形更形象直观.
2、D
【解析】
写出函数图象在x轴下方所对应的自变量的范围即可.
【详解】
当x>-1时,y<0,
所以不等式kx+b<0的解集是x>-1.
故选:D.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
3、A
【解析】
直接利用二次根式的性质化简即可求出答案.
【详解】
=2
故选:A.
此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.
4、D
【解析】
分析:要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.
详解:根据题意可能的最短路线有6条,重复的不算,可以通过三条来计算比较.(见图示)
根据他们相应的展开图分别计算比较:
图①:;
图②:;
图③:.
∵.
故应选D.
点睛:考查了轴对称-最短路线问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.
5、C
【解析】
函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,可得m+1<0,截距-(4m-3)>0,解不等式组可得答案.
【详解】
由已知得,函数y=(m+1)x−(4m−3)的图象在第一、二、四象限,
有
解之得:m<−1.
故答案选C.
本题考查已知一次函数经过的象限,求参数的取值范围.熟记一次函数,k和b与函数图象所在象限的关系是解决此题的关键.
6、B
【解析】
根据条形图,观察可得15岁的人数最多,因此可得众数是15,将岁数从大到小排列,根据最中间的那个数就是中位数.
【详解】
首先根据条形图可得15岁的人数最多,
因此可得众数是15;
将岁数从大到小排列,根据条形图可知有人数:,
因此可得最中间的11和12个的平均值是中位数,11和12个人都是15岁,
故可得中位数是15.
本题主要考查众数和中位数的计算,是数据统计的基本知识,应当熟练掌握.
7、B
【解析】
试题解析:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:
小强
小华 石头 剪刀 布
石头 (石头,石头) (石头,剪刀) (石头,布)
剪刀 (剪刀,石头) (剪刀,剪刀) (剪刀,布)
布 (布,石头) (布,剪刀) (布,布)
∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).
∴小明和小颖平局的概率为:.
故选B.
考点:概率公式.
8、A
【解析】
试题分析:由题意可得,甲的平均数为:(9+8+7+7+9)÷5=8;
方差为:=0.8
乙的平均数为:(10+8+9+7+1)÷5=8;
方差为:=2;
∵0.8<2,∴选择甲射击运动员,故选A.
考点:方差.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、75或1
【解析】
分两种情况:①当点E在线段AD上时,BE=AD,由矩形的性质得出BC=AD=BE=2AB,∠BAE=90°,AD∥BC,得出BE=2AB,∠BEC=∠BCE,∠CBE=∠AEB,得出AB= BE,证出∠AEB=30°,得出∠CBE=30°,即可得出结果;②点E在DA延长线上时,BE=AD,同①得出∠AEB=30°,由直角三角形的性质得出∠ABE=60°,求出∠CBE=90°+60°=10°,即可得出结果.
【详解】
解:分两种情况:
①当点E在线段AD上时,BE=AD,如图1所示:
∵四边形ABCD为矩形,
∴BC=AD=BE=2AB,∠BAE=90°,AD∥BC,
∴BE=2AB,∠BEC=∠BCE,∠CBE=∠AEB,
∴AB=BE,
∴∠AEB=30°,
∴∠CBE=30°,
∴∠BEC=∠CBE=(180°﹣30°)=75°;
②点E在DA延长线上时,BE=AD,如图2所示:
∵四边形ABCD为矩形,
∴BC=AD=BE=2AB,∠ABC=∠BAE=∠BAD=90°,
∴BE=2AB,∠BEC=∠BCE,
∴AB=BE,
∴∠AEB=30°,
∴∠ABE=60°,
∴∠CBE=90°+60°=10°,
∴∠BEC=∠BCE=(180°﹣10°)=1°;
故答案为:75或1.
本题考查了矩形的性质、直角三角形的性质、平行线的性质、等腰三角形的性质等知识;熟练掌握矩形的性质,进行分类讨论是解题的关键.
10、
【解析】
根据因式分解的定义:将多项式和的形式转化为整式乘积的形式;先提公因式,再套用完全平方公式即可求解.
【详解】
,
=,
=,
故答案为:.
本题主要考查因式分解,解决本题的关键是要熟练掌握因式分解的定义和方法.
11、10xy2
【解析】
试题解析: 分母分别是 故最简公分母是
故答案是:
点睛:确定最简公分母的方法是:
(1)取各分母系数的最小公倍数;
(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;
(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.
12、
【解析】
根据正方形对角线等于边长的倍得出规律即可.
【详解】
由题意得,a1=1,
a2=a1=,
a3=a2=()2,
a4=a3=()3,
…,
an=an-1=()n-1.
=[()n-1]2=
故答案为:
本题主要考查了正方形的性质,熟记正方形对角线等于边长的倍是解题的关键,要注意的指数的变化规律.
13、乙
【解析】
根据方差的定义,方差越小数据越稳定即可得出答案.
【详解】
解:两队队员身高平均数均为1.85米,方差分别为,,
,
身高较整齐的球队是乙队;
故答案为:乙.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
先分别求出各不等式的解集,再求出其公共解集,在数轴上表示即可求解.
【详解】
解:
由①解得,由②解得,在数轴上表示如图所示,
则不等式组的解集为.
此题主要考查不等式组的求解,解题的关键是熟知不等式的性质.
15、130°
【解析】
先根据∠2与∠3互补,∠3=140°,得出AB∥CD,∠2=40°,再根据∠1和∠2互余,得到∠1的度数,最后根据平行线的性质,即可得到∠4的度数.
【详解】
∵∠2与∠3互补,∠3=140°,
∴AB∥CD,∠2=180°-140°=40°,
又∵∠1和∠2互余,
∴∠1=90°-40°=50°,
∵AB∥CD,
∴∠4=180°-∠1=180°-50°=130°.
本题主要考查了平行线的性质与判定以及余角和补角计算的应用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.
16、 (1)甲厂抽样检测的皮具总质量为3000克,乙厂抽样检测的皮具总质量为3000克;(2)乙公司生产皮具的质量比较稳定.
【解析】
(1)求出记录的质量总和,再加上标准质量即可;
(2)以标准质量为基准,根据方差的定义求出两公司的方差,相比即可.
【详解】
解:(1)甲厂抽样检测的皮具总质量为500×6+(﹣3+0+0+1+2+0)=3000(克),
乙厂抽样检测的皮具总质量为500×6+(﹣2+1﹣1+0+1+1)=3000(克);
(2)∵=×(﹣3+0+0+1+2+0)=0,
∴=×[(﹣3﹣0)2+(0﹣0)2×3+(1﹣0)2+(2﹣0)2]≈2.33,
∵=×(﹣2+1﹣1+0+1+1)=0,
∴=×[(﹣2﹣0)2+3×(1﹣0)2+(﹣1﹣0)2+(0﹣0)2]≈1.33,
∵<,
∴乙公司生产皮具的质量比较稳定.
本题主要考查了方差,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差.
17、 (1) ;(2)线段的最大值为.
【解析】
(1)根据题意首先计算A、B点的坐标,设出二次函数的解析式,代入求出参数即可.
(2)根据题意设F点的横坐标为m,再结合抛物线和一次函数的解析式即可表示F、D的纵坐标,所以可得DF的长度,使用配方法求解出最大值即可.
【详解】
解:,二次函数与一次函数的图象交于轴上一点,
点为,点为.
二次函数的图象顶点在轴上.
设二次函数解析式为.
把点代入得,
.
抛物线的解析式为,即.
设点坐标为,点坐标为.
.
当时,即,解得.
点为线段上一点,
.
当时,线段的最大值为.
本题主要考查二次函数的性质,关键在于利用配方法求解抛物线的最大值,这是二次函数求解最大值的常用方法,必须熟练掌握.
18、(1)(2)(3)(4)
【解析】
(1)原式变形后,利用同分母分式的减法法则计算即可得到结果.
(2)首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算,代自己喜欢的值时注意不能使分母为1.
(3)先把各根式化为最简二次根式,再合并同类项即可
(4)二次根式的性质去括号,再合并同类二次根式。
【详解】
(1).原式
(2)原式
(3)原式
(4)原式
此题考查分式的混合运算, 掌握运算法则是解题关键
一、填空题(本大题共5个小题,每小题4分,共20分)
19、k>1
【解析】
∵关于x的一元二次方程x1﹣1x+k﹣1=0没有实数根,
∴△<0,即(﹣1)1﹣4(k﹣1)<0,
解得k>1,
故答案为k>1.
20、2(答案不唯一).
【解析】
根据三角形的三边关系可得3-2<第三边长<3+2,再解可得第三边的范围,然后可得答案.
【详解】
解:设第三边长为x,由题意得:
3-2<x<3+2,
解得:1<x<1.
故答案为:2(答案不唯一).
此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.
21、
【解析】
直接应用平方差公式即可求解..
【详解】
.
本题考查因式分解,熟记平方差公式是关键.
22、x<﹣1.
【解析】
以交点为分界,结合图象写出不等式-2x>ax+3的解集即可.
【详解】
解:∵函数y1=-2x和y2=ax+3的图象相交于点A(-1,2),
∴不等式-2x>ax+3的解集为x<-1.
故答案为x<-1.
此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
23、
【解析】
分析: 等量关系为:原来人均单价-实际人均单价=3,把相关数值代入即可.
详解: 原来人均单价为,实际人均单价为,
那么所列方程为,
故答案为:
点睛: 考查列分式方程;得到人均单价的关系式是解决本题的关键.
二、解答题(本大题共3个小题,共30分)
24、详见解析
【解析】
根据平行线的性质,利用全等三角形的判定定理(AAS)和性质,可得出结论.
【详解】
∵四边形ABCD是平行四边形,
∴AD=BC,AD//BC,∴∠DAE=∠CBF,
∵DE⊥AC于E,BF⊥AC于F,
∴∠DEA=∠BFC=90°,
在△AED和△BFC中,
,
∴△AED≌△BFC,
∴BF=DE.
考查了平行四边形的性质,以及全等三角形的性质与判定,解题关键是灵活运用其性质.
25、.
【解析】
试题分析:首先分别求出不等式组中两个不等式的解,然后在数轴上表示出来,得出不等式组的解.
试题解析:由①,得x>-3, 由②,得x≤1,
解集在数轴上表示为:
所以原不等式的解集为:-3<x≤1.
考点:解不等式组
26、证明见解析.
【解析】
先由SSS证明△ABC≌△DFE,再根据全等三角形的性质得出∠ABC=∠DFE,证出AB∥DF和AB=DF,即可得出结论.
【详解】
解:∵BE=FC
∴BE+EC=FC+EC
∴BC=FE
在△ABC和△DFE中,
,
∴△ABC≌△DFE,
∴∠ABC=∠DFE
∴AB∥DF,又AB=DF
∴四边形ABDF是平行四边形
本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
厂家
超过标准质量的部分
甲
﹣3
0
0
1
2
0
乙
﹣2
1
﹣1
0
1
1
四川省成都市武侯区西蜀实验学校2023-2024学年九上数学期末检测模拟试题含答案: 这是一份四川省成都市武侯区西蜀实验学校2023-2024学年九上数学期末检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列说法中正确的是,下列说法错误的是,若,,则的值为等内容,欢迎下载使用。
四川省成都市武侯区西蜀实验学校2023-2024学年九上数学期末质量跟踪监视试题含答案: 这是一份四川省成都市武侯区西蜀实验学校2023-2024学年九上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,抛物线y=3,抛物线的对称轴是直线,方程2x等内容,欢迎下载使用。
2023-2024学年四川成都市武侯区西蜀实验学校数学九上期末教学质量检测试题含答案: 这是一份2023-2024学年四川成都市武侯区西蜀实验学校数学九上期末教学质量检测试题含答案,共8页。