![2024-2025学年四川南充市嘉陵区数学九上开学检测模拟试题【含答案】第1页](http://m.enxinlong.com/img-preview/2/3/16191382/0-1727261179178/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年四川南充市嘉陵区数学九上开学检测模拟试题【含答案】第2页](http://m.enxinlong.com/img-preview/2/3/16191382/0-1727261179295/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024-2025学年四川南充市嘉陵区数学九上开学检测模拟试题【含答案】第3页](http://m.enxinlong.com/img-preview/2/3/16191382/0-1727261179325/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024-2025学年四川南充市嘉陵区数学九上开学检测模拟试题【含答案】
展开
这是一份2024-2025学年四川南充市嘉陵区数学九上开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知三个数为3,4,12,若再添加一个数,使这四个数能组成一个比例,那么这个数可以是( )
A.1B.2C.3D.4
2、(4分)如图,在平行四边形ABCD中,下列结论错误的是( )
A.∠BDC=∠ABDB.∠DAB=∠DCB
C.AD=BCD.AC⊥BD
3、(4分)把根号外的因式移入根号内,结果( )
A.B.C.D.
4、(4分)在平面直角坐标系中,点关于原点对称的点的坐标是( )
A.B.C.D.
5、(4分)若关于的方程产生增根,则的值是( )
A.B.C.或D.
6、(4分)下列手机软件图标中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
7、(4分)菱形的边长是2cm,一条对角线的长是2cm,则另一条对角线的长是( )
A.4 cmB.cmC.2 cmD.2cm
8、(4分)如图四边形ABCD是正方形,点E、F分别在线段BC、DC上,∠BAE=30°.若线段AE绕点A逆时针旋转后与线段AF重合,则旋转的角度是( )
A.30°B.45°C.60°D.90°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某垃圾处理厂日处理垃圾吨,实施垃圾分类后,每小时垃圾的处理量比原来提高,这样日处理同样多的垃圾就少用.若设实施垃圾分类前每小时垃圾的处理量为吨,则可列方程____________.
10、(4分)如图,中,,若动点从开始,按C→A→B→C的路径运动(回到点C就停止),且速度为每秒,则P运动________秒时, 为等腰三角形.(提示:直角三角形中,当斜边和一条直角边长分别为和时,另一条直角边为)
11、(4分)甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是______(填“甲”或“乙”)
12、(4分)若关于x的方程-2=会产生增根,则k的值为________
13、(4分)如图,四边形ABCD是梯形,AD∥BC,AC=BD,且AC⊥BD,如果梯形ABCD的中位线长是5,那么这个梯形的高AH=___.
三、解答题(本大题共5个小题,共48分)
14、(12分) “四书五经”是中国的“圣经”,“四书五经”是《大学》、《中庸》、《论语》和《孟子》(四书)及《诗经》、《尚书》、《易经》、《礼记》、《春秋》(五经)的总称,这是一部被中国人读了几千年的教科书,包含了中国古代的政治理想和治国之道,是我们了解中国古代社会的一把钥匙,学校计划分阶段引导学生读这些书,计划先购买《论语》和《孟子》供学生使用,已知用500元购买《孟子》的数量和用800元购买《论语》的数量相同,《孟子》的单价比《论语》的单价少15元.
(1)求《论语》和《孟子》这两种书的单价各是多少?
(2)学校准备一次性购买这两种书本,但总费用不超过元,那么这所学校最多购买多少本《论语》?
15、(8分)如图在平面直角坐标系中,O是坐标原点,矩形OACB的顶点A,B分别在x轴、y轴上,已知,点D为y轴上一点,其坐标为,若连接CD,则,点P从点A出发以每秒1个单位的速度沿线段的方向运动,当点P与点B重合时停止运动,运动时间为t秒
(1)求B,C两点坐标;
(2)求的面积S关于t的函数关系式;
(3)当点D关于OP的对称点E落在x轴上时,请直接写出点E的坐标,并求出此时的t值.
16、(8分)如图,在ABC中,∠C=90º,BD是ABC的一条角一平分线,点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形,
(1)求证:点O在∠BAC的平分线上;
(2)若AC=5,BC=12,求OE的长
17、(10分)如图,正方形ABCD和正方形CEFC中,点D在CG上,BC=1,CE=3,H是AF的中点,EH与CF交于点O.
(1)求证:HC=HF.
(2)求HE的长.
18、(10分)计算:(1) ; (2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,有公共顶点A、B的正五边形和正六边形,连接AC交正六边形于点D,则∠ADE的度数为___.
20、(4分)若x-y=,xy=,则代数式(x-1)(y+1)的值等于_____.
21、(4分)因式分解的结果是____.
22、(4分)如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.
23、(4分)计算:______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知A(-4,0)、B(0,2)、C(6,0),直线AB与直线CD相交于点D,D点的横纵坐标相同;
(1)求点D的坐标;
(2)点P从O出发,以每秒1个单位的速度沿x轴正半轴匀速运动,过点P作x轴的垂线分别与直线AB、CD交于E、F两点,设点P的运动时间为t秒,线段EF的长为y(y>0),求y与t之间的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)的条件下,直线CD上是否存在点Q,使得△BPQ是以P为直角顶点的等腰直角三角形?若存在,请求出符合条件的Q点坐标,若不存在,请说明理由.
25、(10分)(1)计算:;
(2)简化:
26、(12分)同学们,我们以前学过完全平方公式,你一定熟悉掌握了吧!现在,我们又学习了二次根式,那么所有非负数都可以看作是一个数的平方,如,,下面我们观察:
;
反之,;
∴;
∴.
仿上例,求:
(1);
(2)若,则、与、的关系是什么?并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 (即ad=bc),我们就说这四条线段是成比例线段,简称比例线段,进而分别判断即可.
【详解】
解:1:3=4:12,
故选:A.
此题主要考查了比例线段,正确把握比例线段的定义是解题关键.
2、D
【解析】
根据平行四边形的性质进行判断即可.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BDC=∠ABD,故选项A正确;
∵四边形ABCD是平行四边形,
∴∠DAB=∠DCB,故选项B正确;
∵四边形ABCD是平行四边形,
∴AD=BC,故选项C正确;
由四边形ABCD是平行四边形,不一定得出AC⊥BD,
故选D.
本题主要考查平行四边形的性质,掌握平行四边形的相关知识点是解答本题的关键.
3、B
【解析】
根据 可得 ,所以移入括号内为进行计算即可.
【详解】
根据根式的性质可得,所以
因此
故选B.
本题主要考查根式的性质,关键在于求a的取值范围.
4、C
【解析】
分析:根据关于原点对称的点的坐标特点解答.
详解:点P(-3,-5)关于原点对称的点的坐标是(3,5),
故选C.
点睛:本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.
5、B
【解析】
根据方程有增根得到x=3,将x=3代入化简后的整式方程中即可求出答案.
【详解】
将方程去分母得x-1=m,
∵方程产生增根,
∴x=3,
将x=3代入x-1=m,得m=2,
故选:B.
此题考查分式方程的解的情况,分式方程的增根是使分母为0的未知数的值,正确理解增根是解题的关键.
6、B
【解析】
试题分析:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故A选项错误;
B.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故B选项正确.
C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故C选项错误;
D.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故B选项错误.
考点:1.中心对称图形;2.轴对称图形.
7、C
【解析】
如图所示,已知AB=2cm,因为菱形对角线互相平分,所以BO=OD=cm,
在Rt△ABO中,,AB=2cm,BO=cm,所以AO=1cm,
故菱形的另一条对角线AC长为2AO=2cm,故选C.
点睛:本题考查了菱形对角线互相垂直平分的性质,勾股定理在直角三角形中的运用,本题根据勾股定理求AO的长是解题的关键.
8、A
【解析】
根据正方形的性质可得AB=AD,∠B=∠D=90°,再根据旋转的性质可得AE=AF,然后利用“HL”证明Rt△ABE和Rt△ADF全等,根据全等三角形对应角相等可得∠DAF=∠BAE,然后求出∠EAF=30°,再根据旋转的定义可得旋转角的度数.
【详解】
解:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
∵线段AE绕点A逆时针旋转后与线段AF重合,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴∠DAF=∠BAE,
∵∠BAE=30°,
∴∠DAF=30°,
∴∠EAF=90°-∠BAE-∠DAF=90°-30°-30°=30°,
∴旋转角为30°.
故选:A.
本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,求出Rt△ABE和Rt△ADF全等是解题的关键,也是本题的难点.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾吨,根据“原工作时间−3=后来的工作时间”列分式方程求解可得.
【详解】
解:设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾,
根据题意得.
故答案为.
本题主要考查分式方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程求解.
10、3,5.4,6,6.5
【解析】
作CD⊥AB于D,根据勾股定理可求CD,BD的长度,分BP=BC,CP=BP,BC=CP三种情况讨论,可得t的值
【详解】
点在上,时,秒;
点在上,时,过点作交于点,
点在上,时,
④点在上,时,过点作交于点,
为的中位线
,
本题考查了勾股定理,等腰三角形的性质,关键是利用分类思想解决问题.
11、甲
【解析】
由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,
则S2甲
相关试卷
这是一份2024-2025学年山西省平遥县数学九上开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河南省数学九上开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年河北沧州数学九上开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)