2024-2025学年青海省玉树市数学九年级第一学期开学达标测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知一次函数y=(k﹣2)x+k+1的图象不过第三象限,则k的取值范围是( )
A.k>2B.k<2C.﹣1≤k≤2D.﹣1≤k<2
2、(4分)如图,矩形ABCD,对角线AC、BD交于点O,AE⊥BD于点E,∠AOB=45°,则∠BAE的大小为( )
A.15°B.22.5°C.30°D.45°
3、(4分)如图,在平面直角坐标系中,点A是反函数图像上的点,过点A与x轴垂直的直线交x轴于点B,连结AO,若的面积为3,则k的值为( )
A.3B.-3
C.6D.-6
4、(4分)如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组的解集是( )
A.B.C.D.
5、(4分)如图,▱ABCD中,,F是BC的中点,作,垂足E在线段CD上,连接EF、AF,下列结论:;;;中,一定成立的是
A.只有B.只有C.只有D.
6、(4分)使式子有意义的未知数x有( )个.
A.0B.1C.2D.无数
7、(4分)如图,矩形纸片ABCD中,已知AD =8,折叠纸片使AB边与对角线AC
重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )
A.3B.4
C.5D.6
8、(4分)不等式组的解集是( )
A.x>4B.x≤3C.3≤x<4D.无解
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形的边分别在轴、轴上,点的坐标为。点分别在边上,。沿直线将翻折,点落在点处。则点的坐标为__________。
10、(4分)把直线沿轴向上平移5个单位,则得到的直线的表达式为_________.
11、(4分)下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:
根据表中数据,要从甲、乙、丙、丁中选择一名成绩好又发挥稳定的运动员参加决赛,应该选择__________.
12、(4分)如图,若菱形ABCD的顶点A,B的坐标分别为(4,0),(﹣1,0),点D在y轴上,则点C的坐标是_____.
13、(4分)若y=++2,则x+y=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)将矩形纸片按图①所示的方式折叠,得到菱形(如图②),若,求的长.
15、(8分)在矩形ABCD中,AB=12,BC=25,P是线段AB上一点(点P不与A,B重合),将△PBC沿直线PC折叠,顶点B的对应点是点G,CG,PG分别交线段AD于E,O.
(1)如图1,若OP=OE,求证:AE=PB;
(2)如图2,连接BE交PC于点F,若BE⊥CG.
①求证:四边形BFGP是菱形;
②当AE=9,求的值.
16、(8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;
(2)若将△A1B1C1绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标.
17、(10分)阳光小区附近有一块长100m,宽80m的长方形空地,在空地上有两条相同宽度的步道(一纵一横)和一个边长为步道宽度7倍的正方形休闲广场,两条步道的总面积与正方形休闲广场的面积相等,如图1所示.设步道的宽为a(m).
(1)求步道的宽.
(2)为了方便市民进行跑步健身,现按如图2所示方案增建塑胶跑道.己知塑胶跑道的宽为1m,长方形区域甲的面积比长方形区域乙大441m2, 且区域丙为正方形,求塑胶跑道的总面积.
18、(10分)如图,是学习分式方程应用时,老师板书的问题和两名同学对该题的解答.(老师找聪聪和明明分别用不同的方法解答此题)
(1)聪聪同学所列方程中的表示_______________________________________.
(2)明明一时紧张没能做出来,请你帮明明完整的解答出来.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,矩形ABCD的对角线AC与BD相交于点O,,.若,,则四边形OCED的面积为___.
20、(4分)在平面直角坐标系中,正方形、、,…,按图所示的方式放置.点、、,…和点、、,…分别在直线和轴上.已知,,则点的坐标是______.
21、(4分)如图,在轴的正半轴上,自点开始依次间隔相等的距离取点,,,,,,分别过这些点作轴的垂线,与反比例函数的图象交于点,,,,,,作,,,,,垂足分别为,,,,,,连结,,,,,得到一组,,,,,它们的面积分别记为,,,,,则_________,_________.
22、(4分)在湖的两侧有A,B两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC中点D和BC中点E之间的距离为16米,则A,B之间的距离应为_________ 米.
23、(4分)若△ABC的三边长分别为5、13、12,则△ABC的形状是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点,网格中有以格点A、B、C为顶点的△ABC,请你根据所学的知识回答下列问题:
(1)求△ABC的面积;(2)判断△ABC的形状,并说明理由.
25、(10分)如图,矩形OBCD中,OB=5,OD=3,以O为原点建立平面直角坐标系,点B,点D分别在x轴,y轴上,点C在第一象限内,若平面内有一动点P,且满足S△POB=S矩形OBCD,问:
(1)当点P在矩形的对角线OC上,求点P的坐标;
(2)当点P到O,B两点的距离之和PO+PB取最小值时,求点P的坐标.
26、(12分)如图,中,点,分别是边,的中点,过点作交的延长线于点,连结.
(1)求证:四边形是平行四边形.
(2)当时,若,,求的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
若函数y=kx+b的图象不过第三象限,则此函数的k<1,b≥1,据此求解.
【详解】
解:∵一次函数y=(k﹣2)x+k+1的图象不过第三象限,
∴k﹣2<1,k+1≥1
解得:﹣1≤k<2,
故选:D.
本题考查一次函数的图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数是大于1或是小于1.
2、B
【解析】
根据同角的余角相等易证∠BAE=∠ADE,根据矩形对角线相等且互相平分的性质,可得∠OAB=∠OBA,在Rt△ABD中,已知∠OBA即可求得∠ADB的大小,从而得到结果.
【详解】
∵四边形ABCD是矩形,AE⊥BD,
∴∠BAE+∠ABD=90°,∠ADE+∠ABD=90°,
∴∠BAE=∠ADE
∵矩形对角线相等且互相平分,
∴∠OAB=∠OBA=,
∴∠BAE=∠ADE=90﹣67.5°=22.5°,
故选 B.
本题考查了矩形的性质,解题的关键是熟练掌握矩形的对角线相等且互相平分.
3、D
【解析】
根据三角形ABO的面积为3,得到|k|=6,即可得到结论.
【详解】
解:∵三角形AOB的面积为3,
∴,
∴|k|=6,
∵k<0,
∴k=-6,
故选:D.
本题考查了反比例函数比例系数k的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.
4、A
【解析】
由于一次函数y1同时经过A、P两点,可将它们的坐标分别代入y1的解析式中,即可求得k、b与m的关系,将其代入所求不等式组中,即可求得不等式的解集.
【详解】
由于直线y1=kx+b过点A(0,2),P(1,m),
则有:
解得 .
∴直线y1=(m−2)x+2.
故所求不等式组可化为:
mx>(m−2)x+2>mx−2,
不等号两边同时减去mx得,0>−2x+2>−2,
解得:1
本题属于对函数取值的各个区间的基本情况的理解和运用
5、C
【解析】
利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出≌,利用全等三角形的性质得出对应线段之间关系进而得出答案.
【详解】
是BC的中点,
,
在▱ABCD中,,
,
,
,
,
,
,
,
,
故正确;
延长EF,交AB延长线于M,
四边形ABCD是平行四边形,
,
,
为BC中点,
,
在和中,
,
≌,
,,
,
,
,
,
,故正确;
,
,
,故错误;
设,则,
,
,
,
,
,故正确,
故选:C.
此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出≌.
6、B
【解析】
根据二次根式的被开方数为非负数可列出式子,解出即可.
【详解】
依题意,
又∵,
∴
故x=5,选B.
此题主要考察二次根式的定义,熟知平方数是非负数即可解答.
7、D
【解析】
试题分析:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.
解:∵四边形ABCD是矩形,AD=8,
∴BC=8,
∵△AEF是△AEB翻折而成,
∴BE=EF=3,AB=AF,△CEF是直角三角形,
∴CE=8﹣3=5,
在Rt△CEF中,CF===4,
设AB=x,
在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,
故选D.
考点:翻折变换(折叠问题);勾股定理.
8、C
【解析】
解不等式3x<2x+4得,x<4,
解不等式x-1≥3,
所以不等式组的解集为:3≤x<4,
故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
由四边形OABC是矩形,BE=BD=1,易得△BED是等腰直角三角形,由折叠的性质,易得∠BEB′=∠BDB′=90°,又由点B的坐标为(3,2),即可求得点B′的坐标.
【详解】
∵四边形OABC是矩形,
∴∠B=90°,
∵BD=BE=1,
∴∠BED=∠BDE=45°,
∵沿直线DE将△BDE翻折,点B落在点B′处,
∴∠B′ED=∠BED=45°,∠B′DE=∠BDE=45°,B′E=BE=1,B′D=BD=1,
∴∠BEB′=∠BDB′=90°,
∵点B的坐标为(3,2),
∴点B′的坐标为(2,1).
故答案为:(2,1).
此题考查翻折变换(折叠问题),坐标与图形性质,解题关键在于得到△BED是等腰直角三角形
10、
【解析】
根据上加下减,左加右减的法则可得出答案.
【详解】
解:沿y轴向上平移5个单位得到直线:,
即.
故答案是:.
本题考查一次函数的图象变换,注意上下移动改变的是y,左右移动改变的是x,规律是上加下减,左加右减.
11、丙
【解析】
由表中数据可知,丙的平均成绩和甲的平均成绩最高,而丙的方差也是最小的,成绩最稳定,所以应该选择:丙.
故答案为丙.
12、(﹣5,3)
【解析】
利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.
【详解】
∵菱形ABCD的顶点A,B的坐标分别为(4,0),(﹣1,0),点D在y轴上,
∴AB=AD=5=CD,
∴DO===3,
∵CD∥AB,
∴点C的坐标是:(﹣5,3).
故答案为(﹣5,3).
此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.
13、5
【解析】
分析:根据被开方数大于等于0列式求出x,再求出y,然后相加计算即可得解.
详解:由题意得,且 ,
解得且
所以,x=3,
y=2,
所以,x+y=3+2=5.
故答案为5.
点睛:考查二次根式有意义的条件,二次根式有意义的条件是:被开方数大于等于零.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
根据菱形及矩形的性质可得到∠BAC的度数,从而根据直角三角函的性质求得BC的长.
【详解】
解:由折叠可得,△EOC≌△EBC,
∴CB=CO,
∵四边形ABED是菱形,
∴AO=CO.
∵四边形ABCD是矩形,
∴∠B=90°,
设BC=x,则AC=2x,
∵在Rt△ABC中,AC2=BC2+AB2,
∴(2x)2=x2+32,
解得x=,即BC=.
根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.
15、(1)见解析;(2)①见解析;②
【解析】
(1)由折叠的性质可得PB=PG,∠B=∠G=90°,由“AAS”可证△AOP≌△GOE,可得OA=GO,即可得结论;
(2)①由折叠的性质可得∠PGC=∠PBC=90°,∠BPC=∠GPC,BP=PG,BF=FG,由平行线的性质可得∠BPF=∠BFP=∠GPC,可得BP=BF,即可得结论;
②由勾股定理可求BE的长,EC的长,由相似三角形的性质可得,可求BF=BP=5x=,由勾股定理可求PC的长,即可求解.
【详解】
证明:(1)∵四边形ABCD是矩形
∴AB=CD,AD=BC,AD∥BC,∠A=∠B=90°
∵将△PBC沿直线PC折叠,
∴PB=PG,∠B=∠G=90°
∵∠AOP=∠GOE,OP=OE,∠A=∠G=90°
∴△AOP≌△GOE(AAS)
∴AO=GO
∴AO+OE=GO+OP
∴AE=GP,
∴AE=PB,
(2)①∵△BPC沿PC折叠得到△GPC,
∴∠PGC=∠PBC=90°,∠BPC=∠GPC,BP=PG,BF=FG
∵BE⊥CG,
∴BE∥PG,
∴∠GPF=∠PFB,
∴∠BPF=∠BFP,
∴BP=BF
∴BP=BF=PG=GF
∴四边形BFGP是菱形;
②∵AE=9,CD=AB=12,AD=BC=GC=25,
∴DE=AD-AE=16,BE==15,
在Rt△DEC中,EC==20
∵BE∥PG
∴△CEF∽△CGP
∴
∴==
∴设EF=4x,PG=5x,
∴BF=BP=GF=5x,
∵BF+EF=BE=15
∴9x=15
∴x=
∴BF=BP=5x=,
在Rt△BPC中,PC==
∴==
本题是相似形综合题,考查了折叠的性质,相似三角形的判定和性质,全等三角形的判定和性质,矩形的性质,菱形的判定和性质,勾股定理等知识,利用方程的思想解决问题是解本题的关键.
16、(1)图形见解析;(2)P点坐标为(,﹣1).
【解析】
(1)分别作出点A、B关于点C的对称点,再顺次连接可得;由点A的对应点A2的位置得出平移方向和距离,据此作出另外两个点的对应点,顺次连接可得;
(2)连接A1A2、B1B2,交点即为所求.
【详解】
(1)如图所示:A1(3,2)、C1(0,2)、B1(0,0);A2(0,-4)、B2(3,﹣2)、C2(3,﹣4).
(2)将△A1B1C1绕某一点旋转可以得到△A2B2C2,旋转中心的P点坐标为(,﹣1).
本题主要考查作图-旋转变换、平移变换,解题关键是根据旋转变换和平移变换的定义作出变换后的对应点.
17、(1)3.1m (2)199m2
【解析】
(1)步道宽度为a, 则正方形休闲广场的边长为7a, 根据两条步道总面积等于休闲广场面积列方程求解即可.其中注意两条步道总面积要减去重叠部分的小正方形面积.
(2)根据空地的长度和宽度,道路和塑胶的宽度以及丙的边长,计算出甲、乙区域长之差,因两区域的宽度相等,根据面积之差等于长度之差乘以宽度,求得宽度,即正方形丙的边长,塑胶跑道的总面积等于总长度乘以塑胶宽度,总长度等于空地长宽之和加丙的一边长,再减去有两次重复相加的塑胶宽度.
【详解】
(1)解:由题意,得100a+80a-a2=(7a)2 ,
化简,得a2=3.1a,
∵a>0,
∴a=3.1.
答:步道的宽为3.1 m.
(2)解:如图,
由题意,得AB-DE=100-80+1=21(m),
∴BC=EF==21(m).
∴塑胶跑道的总面积为1×(100+80+21-2)=199(m2).
本题考查了一元二次方程的实际应用,在求相交跑道或小路面积时一定不能忽视重叠的部分,正确理解题意是解题的关键,
18、(1)行驶普通火车客车所用的时间;(2)见解析.
【解析】
(1)根据题意可知x表达的是时间
(2)设普通火车客车的速度为,则高速列车的速度为,根据题意用总路程除以普通火车客车的速度-用总路程除以高速列车的速度=4,列出方程即可
【详解】
解:(1)行驶普通火车客车所用的时间
(2)解:设普通火车客车的速度为,则高速列车的速度为,由题意列方程得.
整理,得:
解,得:
经检验是原方程的根
因此高速列车的速度为
此题考查分式方程的应用,解题关键在于列出方程
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到OCED为平行四边形,根据邻边相等的平行四边形为菱形得到四边形OCED为菱形,得到对角线互相平分且垂直,求出菱形OCED的面积即可.
【详解】
解:连接OE,与DC交于点F,
∵四边形ABCD为矩形,
∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,AB=CD,
∵OD∥CE,OC∥DE,
∴四边形ODEC为平行四边形,
∵OD=OC,
∴四边形OCED为菱形,
∴DF=CF,OF=EF,DC⊥OE,
∵DE∥OA,且DE=OA,
∴四边形ADEO为平行四边形,
∵AD=,AB=2,
∴OE=,CD=2,
则S菱形OCED=OE•DC=××2=.
故答案为:.
本题考查矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解题的关键.
20、
【解析】
由正方形的轴对称性,由C1、C2的坐标可求A1、A2的坐标,将A1、A2的坐标代入y=kx+b中,得到关于k与b的方程组,求出方程组的解得到k与b的值,从而求直线解析式,由正方形的性质求出OB1,OB2的长,设B2G=A3G=t,表示出A3的坐标,代入直线方程中列出关于b的方程,求出方程的解得到b的值,确定出A3的坐标.
【详解】
连接A1C1,A2C2,A3C3,分别交x轴于点E、F、G,
∵正方形A1B1C1O、A2B2C2B1、A3B3C3B2,
∴A1与C1关于x轴对称,A2与C2关于x轴对称,A3与C3关于x轴对称,
∵C1(1,-1),C2(,−),
∴A1(1,1),A2(,),
∴OB1=2OE=2,OB2=OB1+2B1F=2+2×(-2)=5,
将A1与A2的坐标代入y=kx+b中得: ,
解得: ,
∴直线解析式为y=x+,
设B2G=A3G=t,则有A3坐标为(5+t,t),
代入直线解析式得:t=(5+t)+,
解得:t=,
∴A3坐标为.
故答案是:.
考查了一次函数的性质,正方形的性质,利用待定系数法求一次函数解析式,是一道规律型的试题,锻炼了学生归纳总结的能力,灵活运用正方形的性质是解本题的关键.
21、
【解析】
设,根据反比例函数图象上点的坐标特征和三角形面积公式得到,,,依次可得,然后代入计算即可.
【详解】
解:设,
则,,,,
,,,
,
.
故答案为:,.
本题考查了反比例函数图像上点的坐标特征和三角形面积公式,求出三角形的面积并找到规律是解答本题的关键.
22、32
【解析】
分析:可得DE是△ABC的中位线,然后根据三角形的中位线定理,可得DE∥AB,且AB=2DE,再根据DE的长度为16米,即可求出A、B两地之间的距离.
详解:∵D、E分别是CA,CB的中点,
∴DE是△ABC的中位线,
∴DE∥AB,且AB=2DE,
∵DE=16米,
∴AB=32米.
故答案是:32.
点睛:本题考查了三角形的中位线定理的应用,解答本题的关键是:明确三角形的中位线平行于第三边,并且等于第三边的一半.
23、直角三角形
【解析】
熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.即可得出.
【详解】
△ABC是直角三角形.
本题考查了勾股定理的逆定理,熟练掌握定理是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)△ABC 的面积为5;(2)△ABC是直角三角形,见解析.
【解析】
(1)三角形ABC面积由长方形面积减去三个直角三角形面积,求出即可;
(2)利用勾股定理表示出AB2=5,BC2=25,AC2=20,再利用勾股定理的逆定理得到三角形为直角三角形.
【详解】
(1 )S△ABC =4 ×4-×1×2 -×4 ×3- ×2×4 =16-1-6-4=5;
(2)△ABC是直角三角形,理由:
∵正方形小方格边长为1
∴AB2=12+22=5, AC2=22+42=20,BC2=32+42=25,
∴AB2+ AC2= BC2,
∴△ABC是直角三角形.
本题考查了勾股定理,勾股定理的逆定理,以及三角形面积,熟练掌握勾股定理是解本题的关键.
25、(1)P(,2);(2)(,2)或(﹣,2)
【解析】
(1)根据已知条件得到C(5,3),设直线OC的解析式为y=kx,求得直线OC的解析式为y=x,设P(m,m),根据S△POB=S矩形OBCD,列方程即可得到结论;
(2)设点P的纵坐标为h,得到点P在直线y=2或y=﹣2的直线上,作B关于直线y=2的对称点E,则点E的坐标为(5,4),连接OE交直线y=2于P,则此时PO+PB的值最小,设直线OE的解析式为y=nx,于是得到结论.
【详解】
(1)如图:
∵矩形OBCD中,OB=5,OD=3,
∴C(5,3),
设直线OC的解析式为y=kx,
∴3=5k,
∴k=,
∴直线OC的解析式为y=x,
∵点P在矩形的对角线OC上,
∴设P(m,m),
∵S△POB=S矩形OBCD,
∴5×m=3×5,
∴m=,
∴P(,2);
(2)∵S△POB=S矩形OBCD,
∴设点P的纵坐标为h,
∴h×5=5,
∴h=2,
∴点P在直线y=2或y=﹣2上,
作B关于直线y=2的对称点E,
则点E的坐标为(5,4),
连接OE交直线y=2于P,则此时PO+PB的值最小,
设直线OE的解析式为y=nx,
∴4=5n,
∴n=,
∴直线OE的解析式为y=x,
当y=2时,x=,
∴P(,2),
同理,点P在直线y=﹣2上,
P(,﹣2),
∴点P的坐标为(,2)或(﹣,2).
本题考查了轴对称——最短路线问题,矩形的性质,待定系数法求函数的解析式,正确的找到点P在位置是解题的关键.
26、(1)详见解析;(2)
【解析】
(1)根据三角形的中位线的性质得出DE∥BC,再根据已知CF∥AB即可得到结论;
(2)根据等腰三角形的性质三线合一得出,然后利用勾股定理即可得到结论.
【详解】
(1)证明:∵点D,E分别是边AB,AC的中点,
∴DE∥BC.
∵CF∥AB,
∴四边形BCFD是平行四边形;
(2)解:∵AB=BC,E为AC的中点,
∴BE⊥AC.
∴
∵AB=2DB=4,BE=3,
本题考查了平行四边形的判定和性质,三角形中位线定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
题号
一
二
三
四
五
总分
得分
甲
乙
丙
丁
平均数
方差
2024-2025学年青海省海西九年级数学第一学期开学教学质量检测试题【含答案】: 这是一份2024-2025学年青海省海西九年级数学第一学期开学教学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省丹阳市九年级数学第一学期开学达标测试试题【含答案】: 这是一份2024-2025学年江苏省丹阳市九年级数学第一学期开学达标测试试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖南望城金海学校数学九年级第一学期开学达标测试试题【含答案】: 这是一份2024-2025学年湖南望城金海学校数学九年级第一学期开学达标测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。