2024-2025学年江苏省苏州市同里中学数学九上开学联考试题【含答案】
展开
这是一份2024-2025学年江苏省苏州市同里中学数学九上开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)关于数据-4,1,2,-1,2,下面结果中,错误的是( )
A.中位数为1B.方差为26C.众数为2D.平均数为0
2、(4分)小华、小明两同学在同一条长为1100米的直路上进行跑步比赛,小华、小明跑步的平均速度分别为3米/秒和5米/秒,小明从起点出发,小华在小明前面200米处出发,两人同方向同时出发,当其中一人到达终点时,比赛停止.设小华与小明之间的距离y(单位:米),他们跑步的时间为x(单位:秒),则表示y与x之间的函数关系的图象是( ).
A.B.C.D.
3、(4分)下列命题中:①两直角边对应相等的两个直角三角形全等;②两锐角对应相等的两个直角三角形全等;③斜边和一直角边对应相等的两个直角三角形全等;④一锐角和斜边对应相等的两个直角三角形全等;⑤一锐角和一边对应相等的两个直角三角形全等.其中正确的个数有( )
A.2个B.3个C.4个D.5个
4、(4分)已知m= ,则( )
A.4<m<5B. 6<m<7C.5<m<6D.7<m<8
5、(4分)古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.如图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形”之和,下列等式中,符合这一规律的表达式为( )
A.B.C.D.
6、(4分)下面计算正确的是( )
A.B.C.D.(a>0)
7、(4分)点(1,- 6)关于原点对称的点为( )
A.(-6,1)B.(-1,6)C.(6,- 1)D.(-1,- 6)
8、(4分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( )
A.0.1B.0.15
C.0.25D.0.3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系xy中,矩形ABCD的边AB在x轴上,AO=2,BO=3,BC=4.将正方形沿箭头方向推,使点D落在y轴正半轴上点D’处,则点C的对应点C’的坐标为____.
10、(4分)将正比例函数y=3x的图象向下平移4个单位长度后,所得函数图象的解析式为___________。
11、(4分)在▱ABCD中,如果∠A+∠C=140°,那么∠B= 度.
12、(4分)如图,在中,,,,为上一点,,将绕点旋转至,连接,分别为的中点,则的最大值为_________.
13、(4分)如图,在中,,,点在上,且,点在上,连结,若与相似,则_____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)解不等式组:,并把解集在数轴上表示出来.
15、(8分)如图,在中,,,D是AC的中点,过点A作直线,过点D的直线EF交BC的延长线于点E,交直线l于点F,连接AE、CF.
(1)求证:①≌;②;
(2)若,试判断四边形AFCE是什么特殊四边形,并证明你的结论;
(3)若,探索:是否存在这样的能使四边形AFCE成为正方形?若能,求出满足条件时的的度数;若不能,请说明理由.
16、(8分)如图,在中,AB=2AD,DE平分∠ADC,交AB于点E,交CB的延长线于点F,EG∥AD交DC于点G.
⑴求证:四边形AEGD为菱形;
⑵若,AD=2,求DF的长.
17、(10分)已知:如图,直线y=﹣x+6与坐标轴分别交于A、B两点,点C是线段AB上的一个动点,连接OC,以OC为边在它的左侧作正方形OCDE连接BE、CE.
(1)当点C横坐标为4时,求点E的坐标;
(2)若点C横坐标为t,△BCE的面积为S,请求出S关于t的函数解析式;
(3)当点C在线段AB上运动时,点E相应随之运动,请求出点E所在的函数解析式.
18、(10分)如图,已知△ABC中,三个顶点的坐标是:A(-3,6)、B(-5,3)、C(-2,1).
(1)画出△ABC向右平移五个单位得到的,并写出的坐标;
(2)画出△ABC关于轴对称的,并写出的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一次函数y=kx﹣1的图象经过点(﹣2,1),则k的值为_____.
20、(4分)当________时,的值最小.
21、(4分)已知关于x的方程x2﹣kx﹣6=0的一个根为x=3,则实数k的值为_____.
22、(4分)化简;÷(﹣1)=______.
23、(4分)方程的根是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长.
25、(10分)某工厂现有甲种原料263千克,乙种原料314千克,计划利用这两种原料生产A、B两种产品共100件.生产一件产品所需要的原料及生产成本如下表所示:
(1)该工厂现有的原料能否保证生产需要?若能,有几种生产方案?请你设计出来.
(2)设生产A、B两种产品的总成本为y元,其中生产A产品x件,试写出y与x之间的函数关系,并利用函数的性质说明(1)中哪种生产方案总成本最低?最低生产总成本是多少?
26、(12分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF与DE相交于点M,且∠BAF=∠ADE.
(1)如图1,求证:AF⊥DE;
(2)如图2,AC与BD相交于点O,AC交DE于点G,BD交AF于点H,连接GH,试探究直线GH与AB的位置关系,并说明理由;
(3)在(1)(2)的基础上,若AF平分∠BAC,且BDE的面积为4+2,求正方形ABCD的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
A.∵从小到大排序为-4,-1,,1,2,2,∴中位数为1 ,故正确;
B. , ,故不正确;
C.∵众数是2,故正确;
D.,故正确;
故选B.
2、D
【解析】
试题分析:跑步时间为x秒,当两人距离为0时,即此时两个人在同一位置,此时,即时,两个人距离为0,当小华到达终点时,小明还未到达,小华到达终点的时间为s,此时小明所处的位置为m,两个人之间的距离为m。
考点:简单应用题的函数图象
点评:此题较为简单,通过计算两个人相遇时的时间,以及其中一个人到达终点后,两个人之间的距离,即可画出图象。
3、C
【解析】
根据全等三角形的判定定理逐项分析,作出判断即可.
【详解】
解:①两直角边对应相等,两直角相等,所以根据SAS可以判定两直角边对应相等的两个直角三角形全等.故①正确;
②两锐角对应相等的两个直角三角形不一定全等,因为对应边不一定相等.故②错误;
③斜边和一直角边对应相等的两个直角三角形,可以根据HL判定它们全等.故③正确;
④一锐角和斜边对应相等的两个直角三角形,可以根据AAS判定它们全等.故④正确;
⑤一锐角和一边对应相等的两个直角三角形,可以根据AAS或ASA判定它们全等.故⑤正确.
综上所述,正确的说法有4个.
故选:C.
本题考查了直角三角形全等的判定.直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.
4、C
【解析】
根据被开方数越大算术平方根越大,可得答案.
【详解】
∵ << ,
∴5<m<6,
故选:C.
本题考查了估算无理数的大小,解题关键在于掌握运算法则.
5、D
【解析】
三角形数=1+2+3+……+n,很容易就可以知道一个数是不是三角形数.结合公式,代入验证三角形数就可以得到答案.
【详解】
A.中3和10是三角形数,但是不相邻;
B.中16、9均是正方形数,不是三角形数;
C.中18不是三角形数;
D.中28=1+2+3+4+5+6+7,36=1+2+3+4+5+6+7+8,所以D正确;
故选D.
此题考查此题考查规律型:数字的变化类,勾股数,解题关键在于找到变换规律.
6、B
【解析】
分析:根据合并同类二次根式、二次根式的除法、二次根式的乘法、二次根式的性质与化简逐项计算分析即可.
详解:A. ∵4与不是同类二次根式,不能合并,故错误;
B. ∵ ,故正确;
C. ,故错误;
D. (a>0),故错误;
故选B.
点睛:本题考查了二次根式的有关运算,熟练掌握合并同类二次根式、二次根式的除法、二次根式的乘法、二次根式的性质是解答本题的关键.
7、B
【解析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数,可得答案.
【详解】
解:点(1,-6)关于原点对称的点的坐标是(-1,6);
故选:B.
本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.
8、D
【解析】
∵根据频率分布直方图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.1.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 (5,)
【解析】
由题知从正方形变换到平行四边形时,边的长度没变,从而求出即可
【详解】
由题知从正方形变换到平行四边形时,A D’=AD=BC=4,D’C’=AB=5,
∵AO=2,根据勾股定理,则O D’=,则D’( 0,),故C’的坐标为(5,)
熟练掌握图形变化中的不变边和勾股定理计算是解决本题的关键
10、y=3x-4
【解析】
试题分析:根据一次函数的平移的性质:左减右加,上加下减,向下平移4个单位长度,可知y=3x-4.
考点:一次函数的图像的平移
11、1.
【解析】
根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.
解:∵平行四边形ABCD,
∴∠A+∠B=180°,∠A=∠C,
∵∠A+∠C=140°,
∴∠A=∠C=70°,
∴∠B=1°.
故答案为1.
12、+2
【解析】
利用直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得MF的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.
【详解】
解:如图,取AB的中点M,连接MF和CM,
∵将线段AD绕点A旋转至AD′,
∴AD′=AD=1,
∵∠ACB=90°,
∵AC=6,BC=2,
∴AB=.
∵M为AB中点,
∴CM=,
∵AD′=1.
∵M为AB中点,F为BD′中点,
∴FM=AD′=2.
∵CM+FM≥CF,
∴当且仅当M、F、C三点共线且M在线段CF上时,CF最大,
此时CF=CM+FM=+2.
故答案为:+2.
此题考查旋转的性质,解题的关键是掌握旋转的性质及直角三角形斜边上的中线等于斜边的一半,知道当且仅当M、F、C三点共线且M在线段CF上时CF最大是解题的关键.
13、2或4.5
【解析】
根据题意,要使△AEF与△ABC相似,由于本题没有说明对应关系,故采用分类讨论法.有两种可能:当△AEF∽△ABC时;当△AEF∽△ACB时.最后利用相似三角形的对应边成比例即可求得线段AF的长即可.
【详解】
当△AEF∽△ABC时,则,AF=2;
当△AEF∽△ACB时,则,AF=4.5.
故答案为:2或4.5.
本题考查了相似三角形的性质应用.利用相似三角形性质时,要注意相似比的对应关系.分类讨论时,要注意对应关系的变化,防止遗漏.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
分别求出不等式组中两不等式的解集,找出解集的公共部分即可.
【详解】
解不等式,得:,
解不等式,得:,
将不等式的解集表示在数轴上如下:
则不等式组的解集为,
本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.
15、(1)①证明见解析;②证明见解析;(2)四边形AFCE是矩形,证明见解析;(3)当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形,证明见解析.
【解析】
(1)①根据中点和平行即可找出条件证明全等.
②由全等的性质可以证明出四边形AFCE是平行四边形,即可得到AE=FC.
(2)根据和可证明出△DCE为等边三角形,进而得到AC=EF即可证明出四边形AFCE是矩形.
(3)根据四边形AFCE是平行四边形,且EF⊥AC,得到四边形AFCE是菱形.由AC=BC,证出△DCE是等腰直角三角形即可得到AC=EF,进而证明出菱形AFCE是正方形.所以存在这样的.
【详解】
(1)①
∵AF∥BE,∴∠FAD=∠ECD,∠AFD=∠CED.
∵AD=CD,∴△ADF≌△CDE.
②由△ADF≌△CDE,∴AF=CE.
∵AF∥BE,∴四边形AFCE是平行四边形,∴AE=FC.
(2)四边形AFCE是矩形.
∵四边形AFCE是平行四边形,∴AD=DC,ED=DF.
∵AC=BC,∴∠BAC=∠B=30°,∴∠ACE=60°.
∵∠CDE=2∠B=60°,∴△DCE为等边三角形,∴CD=ED,∴AC=EF,∴四边形AFCE是矩形.
(3)当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形.
∵四边形AFCE是平行四边形,且EF⊥AC,∴四边形AFCE是菱形.
∵AC=BC,∴∠BAC=∠B=22.5°,∴∠DCE=2∠B=45°,∴△DCE是等腰直角三角形,即DC=DE,∴AC=EF,∴菱形AFCE是正方形.
即当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形.
此题考查三角形全等,特殊平行四边形的判定及性质,难度中等.
16、(1)证明见解析;(2)4.
【解析】
(1)先证出四边形AEGD是平行四边形,再由平行线的性质和角平分线证出∠ADE=∠AED,得出AD=AE,即可得出结论;
(2)连接AG交DF于H,由菱形的性质得出AD=DG,AG⊥DE,证出△ADG是等边三角形,AG=AD=2,得出∠ADH=30°,AH=AG=1,由直角三角形的性质得出DH=AH=,得出DE=2DH=2,证出DG=BE,由平行线的性质得出∠EDG=∠FEB,∠DGE=∠C=∠EBF,证明△DGE≌△EBF得出DE=EF,即可得出结果.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥DC,
∴∠AED=∠GDE,
∵AE∥DG,EG∥AD,
∴四边形AEGD是平行四边形,
∵DE平分∠ADC,
∴∠ADE=∠GDE,
∴∠ADE=∠AED,
∴AD=AE,
∴四边形AEGD为菱形;
(2)解:连接AG交DF于H,如图所示:
∵四边形AEGD为菱形,
∴AD=DG,AG⊥DE,
∵∠ADC=60°,AD=2,
∴△ADG是等边三角形,AG=AD=2,
∴∠ADH=30°,AH=AG=1,
∴DH=AH=,
∴DE=2DH=2,
∵AD=AE,AB=2AD,AD∥CF,EG∥AD,
∴DG=BE,∠EDG=∠FEB,∠DGE=∠C=∠EBF,
在△DGE和△EBF中,
∴△DGE≌△EBF(ASA),
∴DE=EF,
∴DF=2DE=4.
本题考查菱形的判定与性质、平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定、等边三角形的判定与性质、直角三角形的性质等知识;熟练掌握菱形的判定与性质是解题的关键.
17、(1)(﹣2,4);(2)S=﹣t2+1t;(3)y=x+1
【解析】
(1)作CF⊥OA于F,EG⊥x轴于G.只要证明△CFO≌△OGE即可解决问题;
(2)只要证明△EOB≌△COA,可得BE=AC,∠OBE=∠OAC=45°,推出∠EBC=90°,即EB⊥AB,由C(t,﹣t+1),可得BC=t,AC=BE=(1﹣t),根据S=•BC•EB,计算即可;
(3)由(1)可知E(t﹣1,t),设x=1﹣t,y=t,可得y=x+1.
【详解】
解:(1)作CF⊥OA于F,EG⊥x轴于G.
∴∠CFO=∠EGO=90°,
令x=4,y=﹣4+1=2,
∴C(4,2),
∴CF=2,OF=4,
∵四边形OCDE是正方形,
∴OC=OE,OC⊥OE,
∵OC⊥OE,
∴∠COF+∠EOG=90°,∠COF+∠OCF=90°,
∴∠EOG=∠OCF,
∴△CFO≌△OGE,
∴OG=OF=4,OG=CF=2,
∴G(﹣2,4).
(2)∵直线y=﹣x+1交y轴于B,
∴令x=0得到y=1,
∴B(0,1),
令y=0,得到x=1,
∴A(1,0),
∴OA=OB=1,∠OAB=∠OBA=45°,
∵∠AOB=∠EOC=90°,
∴∠EOB=∠COA,
∵OE=OC,
∴△EOB≌△COA,
∴BE=AC,∠OBE=∠OAC=45°,
∴∠EBC=90°,即EB⊥AB,
∵C(t,﹣t+1),
∴BC=t,AC=BE=(1﹣t),
∴S=•BC•EB=×t•(1﹣t)=﹣t2+1t.
(3)当点C在线段AB上运动时,由(1)可知E(t﹣1,t),
设x=1﹣t,y=t,
∴t=x+1,
∴y=x+1.
故答案为(1)(﹣2,4);(2)S=﹣t2+1t;(3)y=x+1.
本题考查一次函数综合题、全等三角形的判定和性质、正方形的性质、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
18、(1)作图见解析,;(2)作图见解析,
【解析】
(1)分别将A、B、C三个点向右平移五个单位得到对应点,顺次连接即可得,再写出坐标即可;
(2)分别作出A、B、C三个点关于x轴的对称点,顺次连接即可得,再写出坐标即可.
【详解】
(1)如图所示,即为所求,;
(2)如图所示,即为所求,.
本题考查坐标系中的平移与轴对称作图,熟练掌握坐标系中点的平移与对称规律是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
一次函数y=kx-1的图象经过点(-2,1),将其代入即可得到k的值.
【详解】
解:一次函数y=kx﹣1的图象经过点(﹣2,1),
即当x=﹣2时,y=1,可得:1=-2k﹣1,
解得:k=﹣1.
则k的值为﹣1.
本题考查一次函数图像上点的坐标特征,要注意利用一次函数的特点以及已知条件列出方程,求出未知数.
20、
【解析】
根据二次根式的意义和性质可得答案.
【详解】
解:由二次根式的性质可知,当时,取得最小值0
故答案为:2
本题考查二次根式的“双重非负性”即“根式内的数或式大于等于零”和“根式的计算结果大于等于零”
21、1
【解析】
本题根据一元二次方程的根的定义、一元二次方程的定义求解.
【详解】
∵x=3是方程的根,由一元二次方程的根的定义,可得32-3k-6=0,解此方程得到k=1.
本题逆用一元二次方程解的定义易得出k的值.
22、-
【解析】
直接利用分式的混合运算法则即可得出.
【详解】
原式,
,
,
.
故答案为.
此题主要考查了分式的化简,正确掌握运算法则是解题关键.
23、,.
【解析】
方程变形得:x1+1x=0,即x(x+1)=0,
可得x=0或x+1=0,
解得:x1=0,x1=﹣1.
故答案是:x1=0,x1=﹣1.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析(2)BD=2
【解析】
解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴CD=ED,∠DEA=∠C=90°.
∵在Rt△ACD和Rt△AED中,,
∴Rt△ACD≌Rt△AED(HL).
(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.
∵DE⊥AB,∴∠DEB=90°.
∵∠B=30°,∴BD=2DE=2.
(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.
(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.
25、(1)生产A、B产品分别为24件,76件;25件,75件;1件,2件.(2)17920元.
【解析】
(1)设生产A产品x件,则生产B产品(100﹣x)件.依题意列出方程组求解,由此判断能否保证生产.
(2)设生产A产品x件,总造价是y元,当x取最大值时,总造价最低.
【详解】
解:(1)假设该厂现有原料能保证生产,且能生产A产品x件,则能生产B产品(100﹣x)件.
根据题意,有,
解得:24≤x≤1,
由题意知,x应为整数,故x=24或x=25或x=1.
此时对应的100﹣x分别为76、75、2.
即该厂现有原料能保证生产,可有三种生产方案:
生产A、B产品分别为24件,76件;25件,75件;1件,2件.
(2)生产A产品x件,则生产B产品(100﹣x)件.根据题意可得
y=120x+200(100﹣x)=﹣80x+20000,
∵﹣80<0,
∴y随x的增大而减小,从而当x=1,即生产A产品1件,B产品2件时,生产总成本最底,最低生产总成本为y=﹣80×1+20000=17920元.
本题是方案设计的题目,考查了一次函数的应用及一元一次不等式组的应用的知识,基本的思路是根据不等关系列出不等式(组),求出未知数的取值,根据取值的个数确定方案的个数,这类题目是中考中经常出现的问题,需要认真领会.
26、(1)见解析;(2)GHAB,见解析;(3)12+8
【解析】
(1)根据正方形的性质证明∠BAF+∠AED=90°即可解决问题.
(2)证明△ADF≌△BAF(ASA),推出AE=BF,由AECD,推出=,由BFAD,推出=,由AE=BF,CD=AD,推出=可得结论.
(3)如图2﹣1中,在AD上取一点J,使得AJ=AE,连接EJ.设AE=AJ=a.利用三角形的面积公式构建方程求出a即可解决问题.
【详解】
(1)证明:如图1中,
∵四边形ABCD是正方形,
∴∠DAE=∠ABF=90°,
∵∠ADE=∠BAF,
∴∠ADE+∠AED=∠BAF+∠AED=90°,
∴∠AME=90°,
∴AF⊥DE.
(2)解:如图2中.结论:GHAB.
理由:连接GH.
∵AD=AB,∠DAE=∠ABF=90°,∠ADE=∠BAF,
∴△ADE≌△BAF(ASA),
∴AE=BF,
∵AECD,
∴=,
∵BFAD,
∴=,
∵AE=BF,CD=AD,
∴=,
∴GHAB.
(3)解:如图2﹣1中,在AD上取一点J,使得AJ=AE,连接EJ.设AE=AJ=a.
∵AF平分∠BAC,∠BAC=45°,
∴∠BAF=∠ADE=22.5°,
∵AE=AJ=a,∠EAJ=90°,
∴∠AJE=45°,
∵∠AJE=∠JED+∠JDE,
∴∠JED=∠JDE=22.5°,
∴EJ=DJ=a,
∵AB=AD=a+a,AE=AJ,
∴BE=DJ=a,
∵S△BDE=4+2,
∴×a×(a+a)=4+2,
解得a2=4,
∴a=2或﹣2(舍弃),
∴AD=2+2,
∴正方形ABCD的面积=12+8.
本题主要考查正方形的性质,全等三角形的判定及性质,平行线分线段成比例,掌握正方形的性质,全等三角形的判定及性质和平行线分线段成比例是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
甲种原料(单位:千克)
乙种原料(单位:千克)
生产成本(单位:元)
A产品
3
2
120
B产品
2.5
3.5
200
相关试卷
这是一份2024-2025学年江苏省苏州市园区第十中学数学九上开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省苏州市园区第十中学数学九上开学复习检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省苏州市姑苏区数学九上开学联考模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。