2024-2025学年湖北省咸宁市天城中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若,,则代数式的值为
A.1B.C.D.6
2、(4分)对于反比例函数y=-的图象,下列说法不正确的是( )
A.经过点(1,-4)B.在第二、四象限C.y随x的增大而增大D.成中心对称
3、(4分)关于x的一元二次方程的两实数根分别为、,且,则m的值为( )
A.B.C.D.0
4、(4分)下列图形:平行四边形、矩形、菱形、等腰梯形、正方形中是轴对称图形的有( )
A.1个B.2个C.3个D.4个
5、(4分)一组数据11、12、15、12、11,下列说法正确的是( )
A.中位数是15B.众数是12
C.中位数是11、12D.众数是11、12
6、(4分)现有甲、乙两个合唱队,队员的平均身高都是175cm,方差分别为,,那么两个队中队员的身高较整齐的是( )
A.甲队B.乙队C.两队一样高D.不能确定
7、(4分)下列四个三角形,与左图中的三角形相似的是( )
A.B.C.D.
8、(4分)如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的和最小值为( )
A.B.4C.3D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形中,,,则的长为_______________.
10、(4分)如图,菱形的两个顶点坐标为,,若将菱形绕点以每秒的速度逆时针旋转,则第秒时,菱形两对角线交点的坐标为__________.
11、(4分)某市出租车的收费标准如下:起步价5元,即千米以内(含千米)收费元,超过千米的部分,每千米收费元.(不足千米按千米计算)求车费(元)与行程(千米)的关系式________.
12、(4分)如图,的对角线、交于点,则图中成中心对称的三角形共有______对.
13、(4分)如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是_____cm1.
三、解答题(本大题共5个小题,共48分)
14、(12分)我国是世界上严重缺水的国家之一,2011年春季以来,我省遭受了严重的旱情,某校为了组织“节约用水从我做起”活动,随机调查了本校120名同学家庭月人均用水量和节水措施情况,如图1、图2是根据调查结果做出的统计图的一部分.
请根据信息解答下列问题:
(1)图1中淘米水浇花所占的百分比为 ;
(2)图1中安装节水设备所在的扇形的圆心角度数为 ;
(3)补全图2;
(4)如果全校学生家庭总人数为3000人,根据这120名同学家庭月人均用水量,估计全校学生家庭月用水总量是多少吨?
15、(8分)先化简,再求值:,其中,
16、(8分)如图,直线y=kx+b经过点A(0,5),B(1,4).
(1)求直线AB的解析式;
(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;
(3)根据图象,写出关于x的不等式2x﹣4≥kx+b的解集.
17、(10分)如图,是的中线,是线段上一点(不与点重合).交于点,,连接.
(1)如图1,当点与重合时,求证:四边形是平行四边形;
(2)如图2,当点不与重合时,(1)中的结论还成立吗?请说明理由.
(3)如图3,延长交于点,若,且,求的度数.
18、(10分)某八年级计划用360元购买笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,结果买得的笔记本比打折前多10本。
(1)请求出每本笔记本的原来标价;
(2)恰逢文具店周年志庆,每本笔记本可以按原价打8折,这样该校最多可购入多少本笔记本?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图, ,矩形ABCD的顶点A、B分别在OM、ON上,当B在边ON上运动时,A 随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,则运动过程中,点C到点O的最大距离为___________.
20、(4分)已知点,在双曲线上,轴于点,轴于点,与交于点,是的中点,若的面积为4,则_______.
21、(4分)如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA=90°,AB=4,则CD的长为_____.
22、(4分)已知P1(-4,y1)、P2(1,y2)是一次函数y=-3x+1图象上的两个点,则y1_______y2(填>,<或=)
23、(4分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线y1=x+1交x、y轴于点A、B,直线y2=﹣2x+4交x、y轴与C、D,两直线交于点E.
(1)求点E的坐标;
(2)求△ACE的面积.
25、(10分)计算:(-4)-(3-2)
26、(12分)如图,在中,.
用圆规和直尺在AC上作点P,使点P到A、B的距离相等保留作图痕迹,不写作法和证明
当满足的点P到AB、BC的距离相等时,求的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
直接提取公因式将原式分解因式,进而将已知数值代入求出答案.
【详解】
,,
.
故选:.
此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.
2、C
【解析】
根据反比例函数的性质用排除法解答.
【详解】
A、把点(1,-4)代入反比例函数y=-得:1×(-4)=-4,故A选项正确;
B、∵k=-4<0,∴图象在第二、四象限,故B选项正确;
C、在同一象限内,y随x的增大而增大,故C选项不正确;
D、反比例函数y=-的图象关于点O成中心对称,故D选项正确.
故选:C.
本题考查了反比例函数y=(k≠0)的性质:
①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.
②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.此题的易错点是在探讨函数增减性时没有注意应是在同一象限内.
3、A
【解析】
根据一元二次方程根与系数的关系得到x1+x2=4,代入代数式计算即可.
【详解】
解:∵x1+x2=4,
∴x1+3x2=x1+x2+2x2=4+2x2=5,
∴x2=,
把x2=代入x2-4x+m=0得:()2-4×+m=0,
解得:m=,
故选:A.
本题考查的是一元二次方程根与系数的关系,掌握一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=-,x1•x2=是解题的关键.
4、D
【解析】
根据轴对称图形的概念对各图形分析判断后即可得解.
【详解】
平行四边形不是轴对称图形,
矩形是轴对称图形,
菱形是轴对称图形,
等腰梯形是轴对称图形,
正方形是轴对称图形,
所以,轴对称图形的是:矩形、菱形、等腰梯形、正方形共4个.
故选D.
此题考查轴对称图形,解题关键在于掌握其定义.
5、D
【解析】
根据中位数、众数的概念求解.
【详解】
这组数据按照从小到大的顺序排列为:11、11、1、1、15,
则中位数是1,
众数是11、1.
故选D.
本题考查了中位数、众数的知识,掌握各知识点的概念是解答本题的关键.
6、B
【解析】
根据方差的意义解答.方差,通俗点讲,就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小). 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
【详解】
解:∵>,∴身高较整齐的球队是乙队.故选:B.
本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
7、B
【解析】
设单位正方形的边长为1,求出各边的长,再根据各选项的边长是否成比例关系即可判断.
【详解】
设单位正方形的边长为1,给出的三角形三边长分别为2,4,2.
A、三角形三边分别是2,,3,与给出的三角形的各边不成比例,故A选项错误;
B、三角形三边,2,,与给出的三角形的各边成比例,故B选项正确;
C、三角形三边2,3,,与给出的三角形的各边不成比例,故C选项错误;
D、三角形三边,,4,与给出的三角形的各边不成正比例,故D选项错误.
故选:B.
本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.
8、B
【解析】
由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为16,可求出AB的长,从而得出结果.
【详解】
解:设BE与AC交于点P',连接BD.
∵点B与D关于AC对称,
∴P'D=P'B,
∴P'D+P'E=P'B+P'E=BE最小.
∵正方形ABCD的面积为16,
∴AB=1,
又∵△ABE是等边三角形,
∴BE=AB=1.
故选:B.
本题考查的是正方形的性质和轴对称-最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4
【解析】
首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.
【详解】
解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,
∵AB∥CD,AD∥BC,
∴四边形ABCD为平行四边形,
∴∠ADF=∠ABE,
∵两纸条宽度相同,
∴AF=AE,
∵
∴△ADF≌△ABE,
∴AD=AB,
∴四边形ABCD为菱形,
∴AC与BD相互垂直平分,
∴BD=
故本题答案为:4
本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.
10、(-,0)
【解析】
先计算得到点D的坐标,根据旋转的性质依次求出点D旋转后的点坐标,得到变化的规律即可得到答案.
【详解】
∵菱形的两个顶点坐标为,,
∴对角线的交点D的坐标是(2,2),
∴,
将菱形绕点以每秒的速度逆时针旋转,
旋转1次后坐标是(0, ),
旋转2次后坐标是(-2,2),
旋转3次后坐标是(-,0),
旋转4次后坐标是(-2,-2),
旋转5次后坐标是(0,-),
旋转6次后坐标是(2,-2),
旋转7次后坐标是(,0),
旋转8次后坐标是(2,2)
旋转9次后坐标是(0,,
由此得到点D旋转后的坐标是8次一个循环,
∵,
∴第秒时,菱形两对角线交点的坐标为(-,0)
故答案为:(-,0).
此题考查了菱形的性质,旋转的性质,勾股定理,直角坐标系中点坐标的变化规律,根据点D的坐标依次求出旋转后的坐标得到变化规律是解题的关键.
11、
【解析】
本题是一道分段函数,当和是由收费与路程之间的关系就可以求出结论.
【详解】
由题意,得
当时,
;
当时,
,
∴,
故答案为:.
本题考查了分段函数的运用,解答时求出函数的解析式是关键.
12、4
【解析】
▱ABCD是中心对称图形,根据中心对称图形的性质,对称点的连线到对称中心的距离相等,即对称中心是对称点连线的中点,并且中心对称图形被经过对称中心的直线平分成两个全等的图形,据此即可判断.
【详解】
解:图中成中心对称的三角形有△AOD和△COB,△ABO与△CDO,△ACD与△CAB,△ABD和△CDB共4对.
本题主要考查了平行四边形是中心对称图形,以及中心对称图形的性质.掌握中心对称图形的特点是解题的关键.
13、2.
【解析】
试题分析:根据菱形的面积等于对角线乘积的一半解答.
试题解析:∵AC=4cm,BD=8cm,
∴菱形的面积=×4×8=2cm1.
考点:菱形的性质.
三、解答题(本大题共5个小题,共48分)
14、【解】 (1)15﹪;(2)108°;(3) 见解析;(4)全校学生家庭月用水总量是9600吨
【解析】
(1)根据扇形统计图的特点可知,用1减去其他3种节水措施所占的百分比即可解答.
(2)用安装节水设备所在的扇形的百分比乘360度,即可得出正确答案.
(3)根据随机调查了本校120名同学家庭可知总数为120,减去其他4组的户数得出答案,再画图即可解答.
(4)先求出这120名同学家庭月人均用水量,再用样本估计总体的方法即可解答.
【详解】
(1)淘米水浇花所占的百分比为1-30%-44%-11%=15%.
(2)安装节水设备所在的扇形的圆心角度数为360°×30%=108°.
(3)如图
(4)(1×10+2×42+3×20+4×32+5×16)÷120×3000
=9100吨.
即全校学生家庭月用水总量是9100吨.
考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
15、
【解析】
先利用二次根式的性质化简,合并后再把已知条件代入求值.
【详解】
原式=
当,y= 4时
原式=
本题主要考查了二次根式的化简求值,注意先化简代数式,再进一步代入求得数值.
16、(1)y=﹣x+5;(2)点C的坐标为(1,2);(1)x≥1.
【解析】
(1)利用待定系数法求一次函数解析式解答即可;
(2)联立两直线解析式,解方程组即可得到点C的坐标;
(1)根据图形,找出点C左边的部分的x的取值范围即可.
【详解】
(1)∵直线y=﹣kx+b经过点A(5,0)、B(1,4),
∴,
解方程组得,
∴直线AB的解析式为y=﹣x+5;
(2)∵直线y=2x﹣4与直线AB相交于点C,
∴解方程组,
解得,
∴点C的坐标为(1,2);
(1)由图可知,x≥1时,2x﹣4≥kx+b.
本题考查两条直线相交或平行问题,解题的关键是掌握一次函数与一元一次不等式和待定系数法求一次函数解析式.
17、(1)见解析;(2)成立,见解析;(3).
【解析】
(1)先判断出∠ECD=∠ADB,进而判断出△ABD≌△EDC,即可得出结论;
(2)先判断出四边形DMGE是平行四边形,借助(1)的结论即可得出结论;
(3)先判断出MI∥BH,MI=BH,进而利用直角三角形的性质即可得出结论.
【详解】
解:(1)∵,
∴,
∵,
∴,
∵是的中线,且与重合,
∴,
∴,
∴,
∵,
∴四边形是平行四边形;
(2)结论成立,理由如下:如图2,过点作交于,
∵,
∴四边形是平行四边形,
∴,且,
由(1)知,,,
∴,,
∴四边形是平行四边形;
(3)如图3取线段的中点,连接,
∵,
∴是的中位线,
∴,,
∵,且,
∴,,
∴.
此题是四边形综合题,主要考查了三角形的中线,中位线的性质和判定,平行四边形的平行和性质,直角三角形的性质,正确作出辅助线是解绑的关键.
18、(1)4元;(2)112本.
【解析】
(1)根据打折后购买的数量比打折前多10本,进而列出方程求出答案;
(2)先求出打8折后的标价,再根据数量=总价÷单价,列式计算即可求解.
【详解】
解:(1)设笔记本打折前售价为元,则打折后售价为元,
由题意得:,
解得:,
经检验,是原方程的根.
答:打折前每本笔记本的售价是4元;
(2)购入笔记本的数量为:(元).
故该校最多可购入112本笔记本.
此题主要考查了分式方程的应用,正确得出等量关系是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
取AB的中点E,连接OE、CE、OC,根据三角形的任意两边之和大于第三边可知当O、C、E三点共线时,点C到点O的距离最大,再根据勾股定理列式求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得解.
【详解】
如图,取AB的中点E,连接OE、CE、OC,∵OC⩽OE+CE,
∴当O、C. E三点共线时,点C到点O的距离最大,
此时,∵AB=2,BC=1,
∴OE=AE=AB=1,
CE=,
∴OC的最大值为:
此题考查直角三角形斜边上的中线,勾股定理,解题关键在于做辅助线
20、2
【解析】
如图,由△ABP的面积为4,知BP•AP=1.根据反比例函数中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.
【详解】
如图
解:∵△ABP的面积为 BP•AP=4,
∴BP•AP=1,
∵P是AC的中点,
∴A点的纵坐标是B点纵坐标的2倍,
又∵点A、B都在双曲线(x>0)上,
∴B点的横坐标是A点横坐标的2倍,
∴OC=DP=BP,
∴k=OC•AC=BP•2AP=2.
故答案为:2.
主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题时一定要正确理解k的几何意义.
21、1
【解析】
利用基本作图可判断MN垂直平分BC,根据线段垂直平分线的性质得到DB=DC,再根据等角的余角相等证出∠ACD=∠A,从而证明DA=DC,从而得到CD=AB=1.
【详解】
由作法得MN垂直平分BC,
∴DB=DC,
∴∠B=∠BCD,
∵∠B+∠A=90°,∠BCD+∠ACD=90°,
∴∠ACD=∠A,
∴DA=DC,
∴CD=AB=×4=1.
故答案为1.
本题考查了作图﹣基本作图—作已知线段的垂直平分线,以及垂直平分线的性质和等腰三角形的判定,熟练掌握相关知识是解题的关键.
22、>
【解析】
根据一次函数的性质即可得答案.
【详解】
∵一次函数y=-3x+1中,-3<0,
∴函数图象经过二、四象限,y随x的增大而减小,
∵-4<1,
∴y1>y2,
故答案为:>
本题考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小;当b>0时,图象与y轴交于正半轴;当b<0时,图象与y轴交于负半轴;熟练掌握一次函数的性质是解题关键.
23、2.5
【解析】
∵EO是AC的垂直平分线,
∴AE=CE,
设CE=x,则ED=AD-AE=4-x,
在Rt△CDE中,CE2=CD2+ED2,
即x2=22+(4-x)2,
解得x=2.5,
即CE的长为2.5,
故答案为2.5.
二、解答题(本大题共3个小题,共30分)
24、(1)(1,2)(2)1
【解析】
分析:(1)联立两函数的解析式,解方程组即可;(2)先根据函数解析式求得点A、C的坐标,即可得线段AC的长,再根据三角形的面积公式计算即可.
详解:(1)∵,∴,∴E(1,2);
(2)当y1=x+1=0时,解得:x=﹣1,∴A(﹣1,0),当y2=﹣2x+4=0时,解得:x=2,
∴C(2,0),∴AC=2﹣(﹣1)=1,
==1.
点睛:本题考查了两直线相交或平行的问题,解题的关键是根据两直线解析式求出它们的交点的坐标及它们和x轴的交点的坐标.
25、3.
【解析】
先将每个二次根式化成最简二次根式之后,再去掉括号,将同类二次根式进行合并.
【详解】
解:(-4)-(3-2)
=(4-)-(-)
=4--+
=3.
故答案为3.
本题考查了二次根式的加减混合运算,最终结果必须是最简二次根式.
26、(1)图形见解析(2)30°
【解析】
试题分析:(1)画出线段AB的垂直平分线,交AC于点P,点P即为所求;
(2)由点P到AB、BC的距离相等可得出PC=PD,结合BP=BP可证出Rt△BCP≌Rt△BDP(HL),根据全等三角形的性质可得出BC=BD,结合AB=2BD及∠C=90°,即可求出∠A的度数.
试题解析:
(1)依照题意,画出图形,如图所示.
(2)∵点P到AB、BC的距离相等,
∴PC=PD.
在Rt△BCP和Rt△BDP中,
,
∴Rt△BCP≌Rt△BDP(HL),
∴BC=BD.
又∵PD垂直平分AB,
∴AD=2BD=2BC.
在Rt△ABC中,∠C=90°,AB=2BC,
∴∠A=30°.
【点睛】本题考查了尺规作图、线段垂直平分线的性质、全等三角形的判定与性质以及解含30°角的直角三角形,解题的关键是:(1)熟练掌握尺规作图;(2)通过证全等三角形找出AB=2BC.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年湖北省武汉为明学校九年级数学第一学期开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年湖北省武汉为明学校九年级数学第一学期开学质量跟踪监视试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年湖北省随州随县联考九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年湖北省随州随县联考九上数学开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年黑龙江省大庆中学数学九年级第一学期开学质量跟踪监视试题【含答案】: 这是一份2024-2025学年黑龙江省大庆中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。