2024-2025学年河南省安阳市林州市九年级数学第一学期开学检测模拟试题【含答案】
展开这是一份2024-2025学年河南省安阳市林州市九年级数学第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)分式方程-1=的解为( )
A.x=1 B.x=-1 C.无解 D.x=-2
2、(4分)如果,那么代数式的值为( )
A.B.C.D.
3、(4分)如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是( )
A.5≤k≤20B.8≤k≤20C.5≤k≤8D.9≤k≤20
4、(4分)如图,在矩形ABCD中,M是BC边上一点,连接AM,过点D作,垂足为若,,则BM的长为
A.1B.C.D.
5、(4分)如图,有一直角三角形纸片ABC,∠C=90°,∠B=30°,将该直角三角形纸片沿DE折叠,使点B与点A重合,DE=1,则BC的长度为( )
A.2B.+2C.3D.2
6、(4分)小华同学某体育项目7次测试成绩如下(单位:分):9,7,1,8,1,9,1.这组数据的中位数和众数分别为( )
A.8,1B.1,9C.8,9D.9,1
7、(4分)已知一组数据3,a,4,5的众数为4,则这组数据的平均数为( )
A.3B.4C.5D.6
8、(4分)已知一次函数y=(m+1)x+n-2的图象经过一.三.四象限,则m,n的取值范围是( )
A.m>-1,n>2B.m<-1,n>2C.m>-1,n<2D.m<-1,n<2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分解因式:x2-9=_ ▲ .
10、(4分)已知函数是关于的一次函数,则的值为_____.
11、(4分)八年级(3)班共有学生50人,如图是该班一次信息技术模拟测试成绩的频数分布直方图(满分为50分,成绩均为整数),若不低于30分为合格,则该班此次成绩达到合格的同学占全班人数的百分比是__________.
12、(4分)某种商品的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于10%,则至多可以打_____折.
13、(4分)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为__.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,点在同一直线上,,,.求证:.
15、(8分)小红同学根据学习函数的经验,对新函数的图象和性质进行了如下探究,请帮她把探究过程补充完整.
第一步:通过列表、描点、连线作出了函数的图象
第二步:在同一直角坐标系中作出函数的图象
(1)观察发现:函数的图象与反比例函数的图象都是双曲线,并且形状也相同,只是位置发生了改变.小红还发现,这两个函数图像既是中心对称图形,又是轴对称图形,请你直接写出函数的对称中心的坐标.
(2)能力提升:函数的图象可由反比例函数的图象平移得到,请你根据学习函数平移的方法,写出函数的图象可由反比例函数的图象经过怎样平移得到?
(3)应用:在所给的平面直角坐标系中画出函数的图像,若点,在函数的图像上,且时,直接写出、的大小关系.
16、(8分)如图,在正方形中,点是边上的一动点,点是上一点,且,、相交于点.
(1)求证:;
(2)求的度数
(3)若,求的值.
17、(10分)如图,四边形ABCD的对角线AC⊥BD于点E,AB=BC,F为四边形ABCD外一点,且∠FCA=90°,∠CBF=∠DCB,
(1)求证:四边形DBFC是平行四边形;
(2)如果BC平分∠DBF,∠CDB=45°,BD=2,求AC的长.
18、(10分)已知函数y =(2m+1) x+ m-3
(1) 若函数图象经过原点,求m的值.
(2) 若函数图象在y轴的交点的纵坐标为-2,求m的值.
(3)若函数的图象平行直线y=-3x–3,求m的值.
(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知平行四边形ABCD中,∠B+∠D=270°,则∠C=________.
20、(4分)分式与的最简公分母是__________.
21、(4分)甲、乙两支球队队员身高的平均数相等,且方差分别为,,则身高罗整齐的球队是________队.(填“甲”或“乙”)
22、(4分)某学校八年级班有名同学,名男生的平均身高为名女生的平均身高,则全班学生的平均身高是__________.
23、(4分)将直线向上平移1个单位,那么平移后所得直线的表达式是_______________
二、解答题(本大题共3个小题,共30分)
24、(8分)现从A,B两市场向甲、乙两地运送水果,A,B两个水果市场分别有水果35和15吨,其中甲地需要水果20吨,乙地需要水果30吨,从A到甲地运费50元/吨,到乙地30元/吨;从B到甲地运费60元/吨,到乙地45元/吨
(1)设A市场向甲地运送水果x吨,请完成表:
(2)设总运费为W元,请写出W与x的函数关系式,写明x的取值范围;
(3)怎样调运水果才能使运费最少?运费最少是多少元?
25、(10分)如图1,在矩形ABCD中,AB=4,AD=5,E为射线BC上一点,DF⊥AE于F,连结DE.
(1)当E在线段BC上时
①若DE=5,求BE的长;
②若CE=EF,求证:AD=AE;
(2)连结BF,在点E的运动过程中:
①当△ABF是以AB为底的等腰三角形时,求BE的长;
②记△ADF的面积为S1,记△DCE的面积为S2,当BF∥DE时,请直接写出S1:S2的值.
26、(12分)(1)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.
经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).
请回答:∠ADB= °,AB= .
(2)请参考以上解决思路,解决问题:
如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
解:去分母得:x(x+2)﹣(x﹣1)(x+2)=3,整理得:2x﹣x+2=3,解得:x=1,检验:把x=1代入(x﹣1)(x+2)=0,所以分式方程无解.故选C.
点睛:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
2、D
【解析】
先把分母因式分解,再约分得到原式=,然后把x=3y代入计算即可.
【详解】
原式=•(x-y)=,
∵x-3y=0,
∴x=3y,
∴原式==.
故选:D.
本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
3、A
【解析】
若反比例函数与三角形交于A(4,5),则k=20;
若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故.
故选A.
4、D
【解析】
由AAS证明≌,得出,证出,连接DM,由HL证明≌,得出,因此,设,则,,在中,由勾股定理得出方程,解方程即可.
【详解】
解:四边形ABCD是矩形,
,,,,
,
,
,
,
,
在和中,,
≌,
,
,
,
在和中,
,
≌,
,
,
设,则,,
在中,由勾股定理得:,
解得:,
.
故选D.
本题考查了矩形的性质、全等三角形的判定与性质、勾股定理;熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问题的关键.
5、C
【解析】
分析: 先由∠B=30°,将该直角三角形纸片沿DE折叠,使点B与点A重合,DE=1,得到AD=BD=2, 再根据∠C=90°,∠B=30°得∠CAD=30°,然后在Rt△ACD中,利用30°的角所对的直角边是斜边的一半求得CD=1,从而求得BC的长度.
详解: ∵△ABC折叠,点B与点A重合,折痕为DE,
∴AD=BD,∠B=∠CAD= 30°, ∠DEB=90°,
∴AD=BD=2, ∠CAD=30°,
∴CD=AD=1,
∴BC=BD+CD=2+1=3
故选:C.
点睛: 本题考查了翻折变换,主要利用了翻折前后对应边相等,此类题目,难点在于利用直角三角形中30°的角所对应的直角边是斜边的一半来解决问题.
6、D
【解析】
试题分析:把这组数据从小到大排列:7,8,9,9,1,1,1,
最中间的数是9,则中位数是9;
1出现了3次,出现的次数最多,则众数是1;
故选D.
考点:众数;中位数.
7、B
【解析】
试题分析:要求平均数只要求出数据之和再除以总的个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.数据3,a,1,5的众数为1,即1次数最多;即a=1.则其平均数为(3+1+1+5)÷1=1.故选B.
考点:1.算术平均数;2.众数.
8、C
【解析】
根据一次函数的图象和性质得出m+1>0,n-2<0,解不等式即可.
【详解】
解:∵一次函数y=(m+1)x+n-2的图象经过一.三.四象限
∴m+1>0,n-2<0
∴m>-1,n<2,
故选:C.
本题主要考查了一次函数图象与系数的关系,关键是掌握数形结合思想.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、 (x+3)(x-3)
【解析】
x2-9=(x+3)(x-3),
故答案为(x+3)(x-3).
10、-1
【解析】
根据一次函数的定义,可得答案.
【详解】
解:由是关于x的一次函数,得
,解得m=-1.
本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
11、70%
【解析】
利用合格的人数即50-10-5=35人,除以总人数即可求得.
【详解】
解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=70%.
故答案是:70%.
本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
12、1.1.
【解析】
设打x折,则售价是500×元.根据利润率不低于10%就可以列出不等式,求出x的范围.
【详解】
解:要保持利润率不低于10%,设可打x折.
则500×-400≥400×10%,
解得x≥1.1.
故答案是:1.1.
本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.
13、50°.
【解析】
解:∵四边形ABCD是平行四边形,∴DC∥AB,
∴∠C=∠ABF.
又∵∠C=40°,∴∠ABF=40°.
∵EF⊥BF,∴∠F=90°,∴∠BEF=90°﹣40°=50°.
故答案为50°.
本题考查平行四边形的性质.
三、解答题(本大题共5个小题,共48分)
14、详见解析
【解析】
先证出,由证明Rt△ABC≌Rt△DFE,得出对应边相等即可.
【详解】
解:证明:,
∴△ABC和△DEF都是直角三角形,
,
即,
在Rt△ABC和Rt△DFE中,
,
∴Rt△ABC≌Rt△DFE(HL),
∴.
本题考查了全等三角形的判定与性质;熟练掌握直角三角形全等的判定方法是解决问题的关键.
15、(1)观察发现:;(2)能力提升:函数的图象可由反比例函数的图象向左平移2个单位平移得到;(3)应用:见解析,.
【解析】
(1)根据函数的图象,可得出结论;(2)根据平移的规律即可求解;(3)根据函数图象即可求得.
【详解】
解:(1)
(2)函数的图象可由反比例函数的图象向左平移2个单位平移得到.
(3)画图如图
本题考查了函数的图象与性质,解题的关键是理解题意,灵活运用所学知识解决问题.
16、(1)见解析;(2)∠AGD=90°;(3).
【解析】
(1)直接利用正方形的性质得到AD=DC,∠ADF=∠DCE,,结合全等三角形的判定方法得出答案;
(2)根据∠DAF=∠CDE和余角的性质可得∠AGD=90°;
(3)利用全等三角形的判定和性质得出△ABH≌△ADG(AAS),即可得出的值.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴AD=DC,∠ADF=∠DCE=90°,
在△ADF和△DCE中
;
∴△ADF≌△DCE(SAS);
(2)解:由(1)得△ADF≌△DCE,
∴∠DAF=∠CDE,
∵∠ADG+∠CDE=90°,
∴∠ADG+∠DAF=90°,
∴∠AGD=90°,
(3)过点B作BH⊥AG于H
∵BH⊥AG,
∴∠BHA=90°,
∴∠BHA=∠AGD,
∵四边形ABCD是正方形,
∴AB=AD=BC,∠BAD=90°,
∵∠ABH+∠BAH=90°,∠DAG+∠BAH=90°,
∴∠ABH=∠DAG,
在△ABH和△ADG中
,
∴△ABH≌△ADG(AAS),
∴AH=DG,
∵BG=BC,BA=BC,
∴BA=BG,
∴AH=AG,
∴DG=AG,
∴.
此题主要考查了正方形的性质以及全等三角形的判定和性质,正确得出△ABH≌△ADG是解题关键.
17、(1)证明见解析;(2)AC=2.
【解析】
(1)证明四边形DBCF的两组对边分别平行;(2)作CM⊥BF于F,△CFM是等腰直角三角形,求出CM的长即可得到AC的长.
【详解】
解:(1)证明:∵AC⊥BD,∠FCA=90°,
∴∠AEB=∠FCA=90°,
∴BD∥CF.
∵∠CBF=∠DCB.
∴CD∥BF,
∴四边形DBFC是平行四边形;
(2)解:∵四边形DBFC是平行四边形,
∴CF=BD=2,∠F=∠CDB=45°,
∵AB=BC,AC⊥BD,∴AE=CE,
作CM⊥BF于F,
∵BC平分∠DBF,∴CE=CM,
∴△CFM是等腰直角三角形,
∴CM=CF=,∴AE=CE=,
∴AC=2.
18、(1)m=3;(2)m=1;(3)m=-2;(4)m<-.
【解析】
(1)把原点坐标代入函数y=(2m+1)x+m-3可解出m;
(2)先确定直线y=(2m+1)x+m-3与y轴的交点坐标,再根据题意得到m-3=-2,然后解方程;
(3)根据两直线平行的问题得到2m+1=-3,然后解方程;
(4)根据一次函数的性质得到2m+1<0,然后解不等式.
【详解】
(1)把(0,0)代入y=(2m+1)x+m-3得m-3=0,
解得m=3;
(2)把x=0代入y=(2m+1)x+m-3得y=m-3,则直线y=(2m+1)x+m-3与y轴的交点坐标为(0,m-3),
所以m-3=-2,
解得m=1;
(3)由直线y=(2m+1)x+m-3平行直线y=-3x-3,
所以2m+1=-3,
解得m=-2;
(4)根据题意得2m+1<0,
解得m<.
本题难度中等.主要考查学生对一次函数各知识点的掌握.属于中考常见题型,应加强训练,同时,注意数形结合的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、45°
【解析】
试题解析:∵四边形ABCD为平行四边形,
∴AD∥BC,∠B=∠D,
且
故答案为
点睛:平行四边形的对角相等,邻角互补.
20、
【解析】
先把分母分解因式,再根据最简公分母定义即可求出.
【详解】
解:第一个分母可化为(x-1)(x+1)
第二个分母可化为x(x+1)
∴最简公分母是x(x-1)(x+1).
故答案为:x(x-1)(x+1)
此题的关键是利用最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作最简公分母.
21、甲
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
解:∵S甲2=0.18,S乙2=0.32,
∴S甲2<S乙2,
∴身高较整齐的球队是甲;
故答案为:甲.
本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
22、
【解析】
只要运用求平均数公式:即可求得全班学生的平均身高.
【详解】
全班学生的平均身高是:.
故答案为:1.
本题考查的是样本平均数的求法.熟记公式是解决本题的关键.
23、
【解析】
平移时k的值不变,只有b发生变化.
【详解】
原直线的k=2,b=0;向上平移2个单位长度,得到了新直线,
那么新直线的k=2,b=0+1=1,
∴新直线的解析式为y=2x+1.
故答案为:y=2x+1.
本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.
二、解答题(本大题共3个小题,共30分)
24、 (1)见解析;(2) W=5x+2025(5≤x≤20);(3)见解析.
【解析】
(1)根据A市场共有35吨,运往甲地x吨,剩下的都运往乙地得到A市场水果运往乙地的数量;甲地共需要20吨写出从B市场运送的量,B市场剩下的都运送到乙地;
(2)根据题目数据,利用运送到甲、乙两地的水果的数量乘以单价,整理即可得W与x的函数关系式;
(3)根据一次函数的性质进行解答即可.
【详解】
(1)如下表:
(2)依题意得:,
解得:5≤x≤20,
∴W=50x+30(35﹣x)+60(20﹣x)+45(x﹣5)=5x+2025(5≤x≤20);
(3)∵W随x增大而增大,∴当x=5时,运费最少,最小运费W=5×5+2025=2050元.
此时,从A市场运往甲地5吨水果,运往乙地30吨水果;B市场的15吨水果全部运往甲地.
本题考查了一次函数的应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,利用一次函数求最值时,关键是应用一次函数增减性.
25、(1)①BE=2;②证明见解析;(2)①BE=2;②S1:S2=1
【解析】
【分析】(1)①在矩形 ABCD 中,∠B=∠DCE=90°,BC=AD=5,DC=AB=4,由勾股定理求得CE的长,即可求得BE的长;
②证明△CED≌△DEF,可得∠CED=∠FED,从而可得∠ADE=∠AED,即可得到AD=AE;
(2)①分两种情况点 E 在线段 BC 上、点 E 在 BC 延长线上两种情况分别讨论即可得;
②S1:S2=1,当 BF//DE 时,延长 BF 交 AD 于 G,由已知可得到四边形 BEDG 是平行四边形,继而可得S△DEF=S平行四边形 BEDG,S △BEF+S△ DFG= S平行四边形 BEDG,S△ABG=S△CDE,根据面积的知差即可求得结论.
【详解】(1)①在矩形 ABCD 中,∠B=∠DCE=90°,
BC=AD=5,DC=AB=4,
∵DE=5,
∴CE==3,
∴BE=BC-CE=5-3=2;
②在矩形 ABCD 中,∠DCE=90°,AD//BC,
∴∠ADE=∠DEC,∠DCE=∠DFE,
∵CE=EF,DE=DE,
∴△CED≌△DEF(HL),
∴∠CED=∠FED,
∴∠ADE=∠AED,
∴AD=AE;
(2)①当点 E 在线段 BC 上时,AF=BF,如图所示:
∴∠ABF=∠BAF,
∵∠ABF+∠EBF=90°,
∠BAF+∠BEF=90°,
∴∠EBF=∠BEF,
∴EF=BF ,∴AF=EF,
∵DF⊥AE,
∴DE=AD=5,
在矩形 ABCD 中,CD=AB=4,∠DCE=90°,
∴CE=3,
∴BE=5-3=2;
当点 E 在 BC 延长线上时,AF=BF,如图所示,
同理可证 AF=EF,
∵DF⊥AE,
∴DE=AD=5,
在矩形 ABCD 中,CD=AB=4,∠DCE=90°,
∴CE=3,
∴BE=5+3=8,
综上所述,可知BE=2或8;
②S1:S2=1,解答参考如下:
当 BF//DE 时,延长 BF 交 AD 于 G,
在矩形 ABCD 中,AD//BC,AD=BC,AB=CD,
∠BAG=∠DCE=90°,
∵BF//DE,
∴四边形 BEDG 是平行四边形,
∴BE=DG,S△DEF=S平行四边形 BEDG,
∴AG=CE,S △BEF+S△ DFG= S平行四边形 BEDG,
∴△ABG≌△CDE,
∴S△ABG=S△CDE,
∵S △ABE= S平行四边形 BEDG,
∴S△ABE=S△BEF+S△DFG,
∴S△ABF=S△DFG,
∴S△ABF+S△AFG=S△DFG+S△AFG即 S△ABG=S△ADF,
∴S△CDE=S△ADF,即 S1:S2=1.
【点睛】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理等,综合性较强,有一定的难度,熟练掌握和灵活用相关知识是解题的关键.
26、(1)75;4;(2)CD=4.
【解析】
(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;
(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.
【详解】
解:(1)∵BD∥AC,
∴∠ADB=∠OAC=75°.
∵∠BOD=∠COA,
∴△BOD∽△COA,
∴.
又∵AO=3,
∴OD=AO=,
∴AD=AO+OD=4.
∵∠BAD=30°,∠ADB=75°,
∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,
∴AB=AD=4.
(2)过点B作BE∥AD交AC于点E,如图所示.
∵AC⊥AD,BE∥AD,
∴∠DAC=∠BEA=90°.
∵∠AOD=∠EOB,
∴△AOD∽△EOB,
∴.
∵BO:OD=1:3,
∴.
∵AO=3,
∴EO=,
∴AE=4.
∵∠ABC=∠ACB=75°,
∴∠BAC=30°,AB=AC,
∴AB=2BE.
在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,
解得:BE=4,
∴AB=AC=8,AD=1.
在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,
解得:CD=4.
本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.
题号
一
二
三
四
五
总分
得分
…
-6
-5
-4
-3
-1
0
1
2
…
…
-1.5
-2
-3
-6
6
3
2
1.5
…
运往甲地(单位:吨)
运往乙地(单位:吨)
A市场
x
B市场
相关试卷
这是一份2024-2025学年甘肃省甘南数学九年级第一学期开学达标检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年河南省安阳市林州市九年级适应性考试数学模拟试题,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年河南省安阳市林州市九年级数学第一学期期末质量检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。