2024-2025学年贵州省安顺黄腊初级中学九年级数学第一学期开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差s2如下表所示:
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )
A.甲B.乙C.丙D.丁
2、(4分)如图,四边形 ABCD 中,AC=a,BD=b,且 AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有( )
①四边形A2B2C2D2是矩形;
②四边形A4B4C4D4是菱形;
③四边形A5B5C5D5的周长是
④四边形AnBnCnDn的面积是
A.①②③B.②③④C.①②D.②③
3、(4分)如果把分式中的x和y都扩大3倍,那么分式的值( )
A.不变B.扩大3倍C.缩小3倍D.无法确定
4、(4分)如图1,动点P从点B出发,以2厘米/秒的速度沿路径B—C—D—E—F—A运动,设运动时间为t(秒),当点P不与点A、B重合时,△ABP的面积S(平方厘米)关于时间t(秒)的函数图象2所示,若AB=6厘米,则下列结论正确的是 ( )
A.图1中BC的长是4厘米
B.图2中的a是12
C.图1中的图形面积是60平方厘米
D.图2中的b是19
5、(4分)如图,将沿直线向右平移后到达的位置,连接、,若的面积为10,则四边形的面积为( )
A.15B.18C.20D.24
6、(4分)将不等式组的解集在数轴上表示出来,正确的是( )
A.B.
C.D.
7、(4分)把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是( )
A.y=3(x-2)2+1 B.y=3(x+2)2-1 C.y=3(x-2)2-1 D.y=3(x+2)2+1
8、(4分)若一个等腰直角三角形的面积为8,则这个等腰三角形的直角边长为( )
A.2B.4C.4D.8
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)正八边形的一个内角的度数是 度.
10、(4分)工人师傅在做门窗或矩形零件时,不仅要测量两组对边的长度是否相等,常常还要测量它们的两条对角线是否相等,以确保图形是矩形.这依据的道理是:_______________________________.
11、(4分)如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+m>nx+4n的解集为____________.
12、(4分)如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的的长度为________.
13、(4分)如图,在四边形中,,,,,且,则______度.
三、解答题(本大题共5个小题,共48分)
14、(12分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.
(Ⅰ)求y与x的函数解析式,请直接写出x的取值范围;
(Ⅱ)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?
15、(8分)某公司招聘职员两名,对甲乙丙丁四名候选人进行笔试和面试,各项成绩均为100分,然后再按笔试70%、面试30%计算候选人综合成绩(满分100分)各项成绩如下表所示:
(1)直接写出四名候选人面试成绩中位数;
(2)现得知候选人丙的综合成绩为87.2分,求表中x的值;
(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要聘请的前两名的人选.
16、(8分)某制笔企业欲将200件产品运往,,三地销售,要求运往地的件数是运往地件数的2倍,各地的运费如图所示.设安排件产品运往地.
(1)①根据信息补全上表空格.②若设总运费为元,写出关于的函数关系式及自变量的取值范围.
(2)若运往地的产品数量不超过运往地的数量,应怎样安排,,三地的运送数量才能达到运费最少.
17、(10分)某加工车间共有20名工人,现要加工1800个甲种零件,1000 个乙种零件,已知每人每天加工甲种零件30个或乙种零件50个(每人只能加工一种零件),怎样分工才能确保同时完成两种零件的加工任务?
18、(10分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是OB,OD的中点.
(1)试说明四边形AECF是平行四边形.
(2)若AC=2,AB=1.若AC⊥AB,求线段BD的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在四边形中,对角线相交于点,则四边形的面积是_____.
20、(4分)如图,已知Rt△ABC中,∠BCA=90°,CD是斜边上的中线,BC=12,AC=5,那么CD=_______.
21、(4分)若一次函数y=(2m﹣1)x+3﹣2m的图象经过一、二、四象限,则m的取值范围是__________
22、(4分)将函数的图象向上平移2个单位,所得的函数图象的解析为________.
23、(4分)关于x的方程有两个实数根,则符合条件的一组的实数值可以是b=______,c=______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,有长为48米的篱笆,一面利用墙(墙的最大可用长度25米),围成中间隔有一道篱笆的长方形花圃ABCD.
(1)当AB的长是多少米时,围成长方形花圃ABCD的面积为180?
(2)能围成总面积为240的长方形花圃吗?说明理由.
25、(10分)为了了解同学们对垃圾分类知识的知晓程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校环保社团的同学们设计了“垃圾分类知识及投放情况”的问卷,并在本校随机抽取了若干名同学进行了问卷测试,根据测试成绩分布情况,他们将全部成绩分成A,B,C,D四组,并绘制了如下不完整的统计图表:
请根据上述统计图表,解答下列问题:
(1)共抽取了多少名学生进行问卷测试?
(2)补全频数分布直方图;
(3)如果测试成绩不低于81分者为“优秀”,请你估计全校2111名学生中,“优秀”等次的学生约有多少人?
26、(12分)如图,已知某学校A与笔直的公路BD相距3 000米,且与该公路上的一个车站D距5 000米,现要在公路边建一个超市C,使之与学校A及车站D的距离相等,那么该超市与车站D的距离是多少米?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
试题分析:根据方差和平均数的意义找出平均数大且方差小的运动员即可.
解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,
∴S甲2=S乙2<S丙2<S丁2,
∴发挥稳定的运动员应从甲和乙中选拔,
∵甲的平均数是561,乙的平均数是560,
∴成绩好的应是甲,
∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;
故选A.
【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
2、C
【解析】
首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:①根据矩形的判定与性质作出判断;②根据菱形的判定与性质作出判断;③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;④根据四边形AnBnCnDn的面积与四边形ABCD的面积间的数量关系来求其面积.
【详解】
①连接A1C1,B1D1.
∵在四边形ABCD中,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1,A1B1∥C1D1,
∴四边形A1B1C1D1是平行四边形;
∵AC丄BD,∴四边形A1B1C1D1是矩形,
∴B1D1=A1C1(矩形的两条对角线相等);
∴A2D2=C2D2=C2B2=B2A2(中位线定理),
∴四边形A2B2C2D2是菱形;
故①错误;
②由①知,四边形A2B2C2D2是菱形;
∴根据中位线定理知,四边形A4B4C4D4是菱形;
故②正确;
③根据中位线的性质易知,A5B5=
∴四边形A5B5C5D5的周长是2×;
故③正确;
④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,
∴S四边形ABCD=ab÷2;
由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
四边形AnBnCnDn的面积是.
故④正确;
综上所述,②③④正确.
故选C.
考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.
3、A
【解析】
根据题意得出算式,再进行化简,即可得出选项.
【详解】
解:把分式中的x和y都扩大3倍为 =,即分式的值不变,
故选:A.
本题考查分式的基本性质,能熟记分式的基本性质的内容是解此题的关键.
4、C
【解析】
试题分析:根据图示可得BC=4×2=8厘米;图2中a=6×8÷2=24;图1中的面积为60平方厘米;图2中的b是17.
考点:函数图象的性质.
5、A
【解析】
根据平移的性质和平行四边形的判定条件可得四边形BDEC是平行四边形,得到四边形BDEC的面积为△ABC面积的2倍,即可求得四边形的面积.
【详解】
解:∵△ABC沿直线AB向右平移后到达△BDE的位置,
∴AB=BD,BC∥DE且BC=DE,
∴四边形BDEC是平行四边形,
∵平行四边形BDEC和△ABC等底等高,
∴,
∴S四边形ACED=
故选:A.
本题考查了平移的性质和平行四边形的判定,平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.
6、C
【解析】
根据解不等式组的方法可以求得原不等式组的解集,并把它的解集在数轴上表示出来.
【详解】
解:,
由不等式①,得x>3,
由不等式②,得x≤4,
∴原不等式组的解集是3<x≤4,在数轴上表示如下图所示,
,
故选:C.
本题考查解一元一次不等式组、在数轴上表示不等式的解集,解答本题的关键是明确解不等式的方法,会在数轴上表示不等式组的解集.
7、D
【解析】
试题分析:二次函数的平移规律:上加下减,左加右减.
把二次函数的图象向左平移2个单位,得到
再向上平移1个单位,得到
故选D.
考点:二次函数的性质
点评:本题属于基础应用题,只需学生熟练掌握二次函数的平移规律,即可完成.
8、C
【解析】
设等腰直角三角形的直角边长为x,根据面积为8,可列方程求解.
解;设等腰直角三角形的边长为x,
x2=8,
x=1或x=-1(舍去).
所以它的直角边长为1.
故选C.
“点睛”本题考查等腰直角三角形的性质,等腰直角三角形的两个腰相等,两腰夹角为90°,根据面积为8可列方程求解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、135
【解析】
根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数即可.
【详解】
正八边形的内角和为:(8﹣2)×180°=1080°,
每一个内角的度数为: 1080°÷8=135°,
故答案为135.
10、对角线相等的平行四边形是矩形.
【解析】
根据已知条件和矩形的判定定理(对角线相等的平行四边形为矩形)解答即可.
【详解】
解:∵门窗所构成的形状是矩形,
∴根据矩形的判定(对角线相等的平行四边形为矩形)可得出.
故答案为:对角线相等的平行四边形是矩形.
本题主要考查矩形的判定定理:对角线相等的平行四边形为矩形,熟练掌握矩形的判定定理是解题的关键.
11、<-1
【解析】
根据图象求出不等式的解集即可.
【详解】
由图象可得
当时,直线y=-x+m的图象在直线y=nx+4n(n≠0)的图象的上方
故可得关于x的不等式-x+m>nx+4n的解集为
故答案为:<-1.
本题考查了解一元一次不等式的问题,掌握用图象法解一元一次不等式是解题的关键.
12、2.1
【解析】
分析:根据矩形的性质可得AC=BD=10,BO=DO=BD=1,再根据三角形中位线定理可得PQ=DO=2.1.
详解:∵四边形ABCD是矩形,
∴AC=BD=10,BO=DO=BD,
∴OD=BD=1,
∵点P、Q是AO,AD的中点,
∴PQ是△AOD的中位线,
∴PQ=DO=2.1.
故答案为2.1.
点睛:此题主要考查了矩形的性质,以及三角形中位线定理,关键是掌握矩形对角线相等且互相平分.
13、1
【解析】
根据勾股定理可得AC的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD的度数.
【详解】
∵AB=2,BC=2,∠ABC=90°,
∴AC=,,∠BAC=45°,
∵12+(2)2=32,
∴∠DAC=90°,
∴∠BAD=90°+45°=1°,
故答案是:1.
考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
三、解答题(本大题共5个小题,共48分)
14、 (1) 21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.
【解析】
(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据A
B两种车至少要能坐1441人即可得取x的取值范围;
(2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.
【详解】
(1)由题意得y=380x+280(62-x)=100x+17360,
∵30x+20(62-x)≥1441,
∴x≥20.1,∴21≤x≤62且x为整数;
(2)由题意得100x+17360≤21940,
解得x≤45.8,∴21≤x≤45且x为整数,
∴共有25种租车方案,
∵k=100>0,∴y随x的增大而增大,
当x=21时,y有最小值, y最小=100×21+17360=19460,
故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.
本题考查了一次函数的应用、一元一次不等式的应用等,解题的关键是理解题意,正确列出函数关系式,会利用函数的性质解决最值问题.
15、(1)89分;(2)86;(3)甲的综合成绩: 89.4分,乙的综合成绩: 86.4分,丁的综合成绩为87.4分,以综合成绩排序确定所要招聘的前两名的人选是:甲、丁.
【解析】
(1)根据中位数的意义,将四个数据排序后,处在第2、3位的两个数的平均数即为中位数,
(2)根据加权平均数的计算方法,列方程求解即可,
(3)依据加权平均数的计算方法,分别计算甲、乙、丁的综合成绩,最后比较产生前两名的候选人.
【详解】
解:(1)面试成绩排序得:86,88,90,92,处在第2、3位两个数的平均数为(88+90)÷2=89,因此中位数是89,
答:四名候选人的面试成绩的中位数是89分;
(2)由题意得:70%x+90×30%=87.2,
解得:x=86,
答:表格中x的值为86;
(3)甲的综合成绩:90×70%+88×30%=89.4分,乙的综合成绩:84×70%+92×30%=86.4分,
丁的综合成绩为:88×70%+86×30%=87.4分,
处在综合成绩前两位的是:甲、丁.
∴以综合成绩排序确定所要招聘的前两名的人选是:甲、丁.
本题考查中位数、加权平均数的计算方法,掌握中位数的概念、加权平均数的计算公式是解题的关键.
16、(1)①见解析;②,;(2)安排运往,,三地的产品件数分别为40件、80件,80件时,运费最少.
【解析】
(1)①根据运往B地的产品件数=总件数-运往A地的产品件数-运往B地的产品件数;运费=相应件数×一件产品的运费,即可补全图表;
②根据题意列出函数解析式即可;
(2)根据运往B地的件数不多于运往C地的件数,列出不等式,利用一次函数的性质解答即可;
【详解】
解:(1)①根据信息填表
②由题意列式(且是整数)(取值范围1分,没写是整数不扣分)
(2)若运往地的产品数量不超过运往地的数量则:,解得,
由,
∵,
∴随的增大而增大,
∴当时,最小,.
此时,.
所以安排运往,,三地的产品件数分别为40件、80件,80件时,运费最少.
考查了一次函数的应用,解题的关键是读懂题意,找出之间的数量关系,列出解析式.
17、安排15名工人加工甲种零件,5名工人加工乙种零件.
【解析】
设安排人生产甲种零件,则(20-x)人生产乙种零件,根据“生产甲种零件的时间生产乙种零件的时间”列方程组求解可得.
【详解】
解:设安排x名工人加工甲种零件,则(20-x)人生产乙种零件,根据题意,得:
.
解这个方程,得
经检验:是所列方程的解,且符合实际意义.
.
答:安排15名工人加工甲种零件,5名工人加工乙种零件.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
18、(1)见解析;(2)BD=2.
【解析】
(1)在平行四边形ABCD中,AC与BD互相平分,OA=OC,OB=OD,又E,F为OB,OD的中点,所以OE=OF,所以AC与EF互相平分,所以四边形AECF为平行四边形;
(2)首先根据平行四边形的性质可得AO=CO,BO=DO,再利用勾股定理计算出BO的长,进而可得BD的长.
【详解】
(1)证明:如图,
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵E,F为OB,OD的中点,
∴OE=OF,
∴AC与EF互相平分,
∴四边形AECF为平行四边形;
(2)解:∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,
∵AC=2,
∴AO=2,
∵AB=1,AC⊥AB,
∴,
∴BD=.
此题主要考查了平行四边形的判定与性质,关键是掌握平行四边形对角线互相平分.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、24
【解析】
判断四边形ABCD为平行四边形,即可根据题目信息求解.
【详解】
∵在中
∴四边形ABCD为平行四边形
∴
故答案为:24
本题考查了平行四边形的判定,解题的关键在于根据题目中的数量关系得出四边形ABCD为平行四边形.
20、6.5
【解析】
【分析】根据勾股定理求AB,根据直角三角形斜边上的中线性质求CD.
【详解】由勾股定理可得:AB=,
因为,CD是斜边上的中线,
所以,CD=
故答案为6.5
【点睛】本题考核知识点:勾股定理,直角三角形斜边上的中线. 解题关键点:熟记勾股定理,直角三角形斜边上中线的性质.
21、m<
【解析】
∵y=(2m﹣1)x+3﹣2m的图象经过一、二、四象限,
∴(2m﹣1)<0,3﹣2m>0
∴解不等式得:m<,m<,
∴m的取值范围是m<.
故答案为m<.
22、
【解析】
根据“上加下减”的原则进行解答即可.
【详解】
解:由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位所得函数的解析式为.
故答案为:.
本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.
23、2 1(答案不唯一,满足即可)
【解析】
若关于x的一元二次方程有两个实数根,所以△=b2-4ac≥0,建立关于b与c的不等式,求得它们的关系后,写出一组满足题意的b,c的值.
【详解】
解:∵关于x的一元二次方程有两个实数根,
∴△=b2-4ac≥0,
即b2-4×c=b2-c≥0,
∴b=2,c=1能满足方程.
故答案为2,1(答案不唯一,满足即可).
本题考查根的判别式,掌握方程有两个实数根的情况是△≥0是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)10米;(1)不能围成总面积为的长方形花圃,见解析.
【解析】
(1)设出AB的长是x米,则BC的长为(48-3x)米,由长方形的面积计算公式列方程解答即可;
(1)利用(1)的方法列出方程,利用判别式进行解答.
【详解】
解:(1)设AB的长是x米,则BC的长为(48-3x)米,根据题意列方程得,
x(48-3x)=180,
解得x1=6,x1=10,
当x=6时,48-3x=30>15,不符合题意,舍去;
当x=10时,48-3x=18<15,符合题意;
答:当AB的长是10米时,围成长方形花圃ABCD的面积为180m1.
(1)不能,理由如下:
同(1)可得x(48-3x)=140,
整理得x1-16x+80=0,
△=(-16)1-4×80=-64<0,
所以此方程无解,
即不能围成总面积为140m1的长方形花圃.
此题主要考查运用长方形面积计算方法列一元二次方程解决实际问题与根的判别式的应用.
25、(1)61(名);(2)见解析;(3)估计全校2111名学生中,“优秀”等次的学生约有1111人.
【解析】
(1)利用频数÷频率=总人数,即可解答.
(2)A组频数 61-(24+18+12)=6,补全见答案;
(3)先求出不低于81分者为“优秀”的百分比,再利用总人数乘以“优秀”等次的学生数的百分比,即可解答.
【详解】
解:(1)24÷1.4=61(名)
答:共抽取了61名学生进行问卷测试;
(2)A组频数 61-(24+18+12)=6,
补全如下
(3)2111×=1111(人)
答:估计全校2111名学生中,“优秀”等次的学生约有1111人.
此题考查条形统计图和统计表.读懂统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚地表示出每个项目的数据.
26、3 125米
【解析】
试题分析:由勾股定理先求出BD的长度,然后设超市C与车站D的距离是x米,分别表示出AC、BC、的长度,对Rt△ABC由勾股定理列方程求解.
试题解析:
在Rt△ABD中,BD==4000米,
设超市C与车站D的距离是x米,则AC=CD=x米,BC=(4000-x)米,
在Rt△ABC中,AC2=AB2+BC2,
即x2=30002+(4000-x)2,解得x=3125,
因此该超市与车站D的距离是3125米.
点睛:本题关键在于设未知数,列方程求解.
题号
一
二
三
四
五
总分
得分
批阅人
甲
乙
丙
丁
平均数(cm)
561
560
561
560
方差s2
3.5
3.5
15.5
16.5
型号
载客量
租金单价
A
30人/辆
380元/辆
B
20人/辆
280元/辆
候选人
笔试成绩
面试成绩
甲
90
88
乙
84
92
丙
x
90
丁
88
86
地
地
地
产品件数(件)
运费(元)
组别
分数段
频数
频率
A
61≤x<71
a
b
B
71≤x<81
24
1.4
C
81≤x<91
18
c
D
91≤x<111
12
1.2
地
地
地
产品件数(件)
运费(元)
2023-2024学年贵州省安顺黄腊初级中学九上数学期末复习检测模拟试题含答案: 这是一份2023-2024学年贵州省安顺黄腊初级中学九上数学期末复习检测模拟试题含答案,共7页。试卷主要包含了方程2x,下列运算正确的是,如图,若点P在反比例函数y=等内容,欢迎下载使用。
2023-2024学年贵州省安顺黄腊初级中学九年级数学第一学期期末学业质量监测试题含答案: 这是一份2023-2024学年贵州省安顺黄腊初级中学九年级数学第一学期期末学业质量监测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列图形中为中心对称图形的是,如图,点P等内容,欢迎下载使用。
贵州省安顺黄腊初级中学2023-2024学年数学八上期末联考模拟试题含答案: 这是一份贵州省安顺黄腊初级中学2023-2024学年数学八上期末联考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中,无理数的是等内容,欢迎下载使用。