2024-2025学年广西南宁市防城港市数学九年级第一学期开学考试模拟试题【含答案】
展开
这是一份2024-2025学年广西南宁市防城港市数学九年级第一学期开学考试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下面几种说法:①对角线互相垂直的四边形是菱形;②一组对边平行,一组邻边相等的四边形是菱形;③对角线相等的平行四边形是矩形;④对角线互相垂直平分的四边形是菱形,那么准确的说法是( )
A.①②③B.②③C.③④D.②④
2、(4分)下列各因式分解的结果正确的是( )
A.B.
C.D.
3、(4分)下列命题,①4的平方根是2;②有两边和一角相等的两个三角形全等;③等腰三角形的底角必为锐角;④两组对角分别相等的四边形是平行四边形.其中真命题有( )
A.4个B.3个C.2个D.1个
4、(4分)矩形的对角线长为20,两邻边之比为3 : 4,则矩形的面积为( )
A.20 B.56 C.192 D.以上答案都不对
5、(4分)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为( )
A.5B.6C.7D.25
6、(4分)若有意义,则x的取值范围是
A.且B.C.D.
7、(4分)一组数据:﹣3,1,2,6,6,8,16,99,这组数据的中位数和众数分别是( )
A.6和6B.8和6C.6和8D.8和16
8、(4分)下列事件中,是必然事件的是( )
A.3天内下雨B.打开电视机,正在播放广告
C.367人中至少有2人公历生日相同D.a抛掷1个均匀的骰子,出现4点向上
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在直角坐标系中,菱形ABCD的顶点坐标C(-1,0)、B(0,2)、D(n,2),点A在第二象限.直线y=-x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m+n= ________
10、(4分)要使二次根式有意义,则自变量的取值范围是___.
11、(4分)某一时刻,身高1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得旗杆的影长是5m,则该旗杆的高度是_________m.
12、(4分)如图,在矩形ABCD中,AB=8,AD=3,点E是CD的中点,连接AE,将△ADE沿直线AE折叠,使点D落在点F处,则线段CF的长度是______.
13、(4分)当m_____时,函数y=(m﹣3)x﹣2中y随x的增大而减小.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:(2﹣)×÷5.
15、(8分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
(1)请将下表补充完整:(参考公式:方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2])
(2)请从下列三个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看, 的成绩好些;
②从平均数和中位数相结合看, 的成绩好些;
③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.
16、(8分)已知方程组,当m为何值时,x>y?
17、(10分)计算:
;
。
18、(10分)如图,四边形是菱形,,垂足分别为点.
求证:;
当菱形的对角线,BD=6时,求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知,那么________.
20、(4分)已知四边形是平行四边形,且,,三点的坐标分别是,,则这个平行四边形第四个顶点的坐标为______.
21、(4分)如图,,两条直线与这三条平行线分别交于点、、和、、.已知,,,的长为_______.
22、(4分)如图,C为线段AB上的一点,△ACM、△CBN都是等边三角形,若AC=3,BC=2,则△MCD与△BND的面积比为 .
23、(4分)甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数相同,射击成绩的方差分别为S甲2=5,S乙2=3.5,则射击成绩比较稳定的是_____(填“甲”或“乙“).
二、解答题(本大题共3个小题,共30分)
24、(8分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表.
请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中c的值是________;
(2)补全征文比赛成绩频数分布直方图;
(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.
25、(10分)解方程:.
26、(12分)如图,在▱ABCD中,E、F为对角线BD上的两点,且BE=DF.求证:∠BAE=∠DCF.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据矩形和菱形的判定定理进行判断.
【详解】
解:对角线互相垂直平分的四边形是菱形,①错误,④正确;
两组对边平行,一组邻边相等的四边形是菱形,②错误;
对角线相等的平行四边形是矩形,③正确;
∴正确的是③④,
故选:C.
本题考查了矩形和菱形的判定,熟练掌握相关判定定理是解题的关键.
2、C
【解析】
将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.
【详解】
=a(a+1)(a-1),故A错误;
,故B错误;
,故C正确;
不能分解因式,故D错误,
故选:C.
此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.
3、C
【解析】
根据平方根的定义对①进行判断;根据全等三角形的判定方法对②进行判断;根据等腰三角形的性质和平行四边形的判定方法对③④进行判断.
【详解】
解:①4的平方根是±2,是假命题;
②有两边和其夹角相等的两个三角形全等,是假命题;
③等腰三角形的底角必为锐角,是真命题;
④两组对角分别相等的四边形是平行四边形是真命题;
故选:C.
本题考查命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
4、C
【解析】分析:首先设矩形的两邻边长分别为:3x,4x,可得(3x)2+(4x)2=202,继而求得矩形的两邻边长,则可求得答案.
详解:∵矩形的两邻边之比为3:4,
∴设矩形的两邻边长分别为:3x,4x,
∵对角线长为20,
∴(3x)2+(4x)2=202,
解得:x=2,
∴矩形的两邻边长分别为:12,16;
∴矩形的面积为:12×16=1.
故选:C.
点睛:此题考查了矩形的性质以及勾股定理.此题难度不大,注意掌握方程思想的应用.
5、A
【解析】
解:利用勾股定理可得:,
故选A.
6、A
【解析】
根据二次根式有意义的条件和分式有意义的条件即可求出答案.
【详解】
由题意可知:,
解得:且,
故选A.
本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.
7、A
【解析】
中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数.
【详解】
在这一组数据中6是出现次数最多的,故众数是6;
这组数据已按从小到大的顺序排列,处于中间位置的两个数是6、6,那么由中位数的定义可知,这组数据的中位数是6;
故选A.
本题为统计题,考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
8、C
【解析】
根据随机事件和必然事件的定义分别进行判断.
【详解】
A. 3天内会下雨为随机事件,所以A选项错误;
B. 打开电视机,正在播放广告,是随机事件,所以B选项错误;
C. 367人中至少有2人公历生日相同是必然事件,所以C选项正确;
D. a抛掷1个均匀的骰子,出现4点向上,是随机事件,所以D选项错误.
故选C.
此题考查随机事件,解题关键在于掌握其定义.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
根据菱形的对角线互相垂直平分表示出点A、点D的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值,由此即可求得答案.
【详解】
∵菱形ABCD的顶点C(-1,0),点B(0,2),
∴点A的坐标为(-1,4),点D坐标为(-2,2),
∵D(n,2),
∴n=-2,
当y=4时,-x+5=4,
解得x=2,
∴点A向右移动2+1=3时,点A在MN上,
∴m的值为3,
∴m+n=1,
故答案为:1.
本题考查了一次函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,正确把握菱形的性质、一次函数图象上点的坐标特征是解题的关键.
10、
【解析】
根据被开方数必须是非负数,可得答案.
【详解】
解:由题意,得
,
解得,
故答案为:.
本题考查了二次根式的意义条件,概念:式子叫二次根式.二次根式中的被开方数必须是非负数,否则二次根式无意义.
11、20
【解析】
试题分析:设该旗杆的高度为xm,根据三角形相似的性质得到同一时刻同一地点物体的高度与其影长的比相等,即有1.6:0.4=x:5,然后解方程即可.
解:设该旗杆的高度为xm,根据题意得,1.6:0.4=x:5,
解得x=20(m).
即该旗杆的高度是20m.
12、
【解析】
由折叠可得全等形,由中点、勾股定理可求出AE的长,得到三角形EFC是等腰三角形,利用三线合一和勾股定理使问题得以解决.
【详解】
解:过点E作EG⊥FC垂足为G,
∵点E是CD的中点,矩形ABCD中,AB=8,AD=3,
∴DE=EC=4,
在Rt△ADE中,AE==5,
由折叠得:∠DEA=∠AEF,DE=EF=DC=4,
又∵EG⊥FC
∴∠FEG=∠GEC,FG=GC,
∴∠AEG=×180°=90°,
∴△ADE∽△EGC,
∴即:,
解得:CG=,
∴FC=,
故答案为:.
考查矩形的性质、折叠轴对称的性质、相似三角形的性质、等腰三角形的性质等知识,综合性较强,掌握图形的性质和恰当的作辅助线方法,是解决问题技巧所在.
13、m
相关试卷
这是一份2024-2025学年广西壮族自治区防城港市数学九年级第一学期开学统考试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广西岳池县联考数学九年级第一学期开学考试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年广西省防城港市名校九年级数学第一学期开学考试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。