2024-2025学年福建省福州市第二中学九上数学开学考试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)有一个正五边形和一个正方形边长相等,如图放置,则的值是()
A.B.C.D.
2、(4分)下列式子成立的是( )
A.=3B.2﹣=2C.=D.()2=6
3、(4分)放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离和放学后的时间之间的关系如图所示,给出下列结论:①小刚家离学校的距离是;②小刚跑步阶段的速度为;③小刚回到家时已放学10分钟;④小刚从学校回到家的平均速度是.其中正确的个数是( )
A.4B.3C.2D.1
4、(4分)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1
5、(4分)对一组数据:2,1,3,2,3分析错误的是( )
A.平均数是2.2B.方差是4C.众数是3和2D.中位数是2
6、(4分)化简:( )
A.2B.-2C.4D.-4
7、(4分)下列图形中,既是中心对称图形也是轴对称图形的是( )
A.B.C.D.
8、(4分)将直线y=2x﹣1向上平移2个单位长度,可得直线的解析式为( )
A.y=2x﹣3B.y=2x﹣2C.y=2x+1D.y=2x
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)二次函数 y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线 x=1,则下列四个结论:①c>0; ②2a+b=0; ③b2-4ac>0; ④a-b+c>0;正确的是_____.
10、(4分)写出一个图象经过点(1,﹣2)的函数的表达式:_____.
11、(4分)如图,矩形ABCD中,对角线AC、BD交于点O,E为OB中点,且AE⊥BD,BD=4,则CD=____________________.
12、(4分)若在平行四边形ABCD中,∠A=30°,AB=9,AD=8,则四边形ABCD=_____.
13、(4分)把直线y=﹣x﹣3向上平移m个单位,与直线y=2x+4的交点在第二象限,则m的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)八年级(1)班同学为了解某小区家庭月均用水情况,随机调査了该小区部分家庭,并将调查数据整理成如下两幅不完整的统计图表:
请根据以上信息,解答以下问题:
(1)直接写出频数分布表中的m、n的值并把频数直方图补充完整;
(2)求出该班调查的家庭总户数是多少?
(3)求该小区用水量不超过15的家庭的频率.
15、(8分)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD于点F,交CB于点E,且∠EAB=∠DCB.
(1)求∠B的度数:
(2)求证:BC=3CE.
16、(8分)如图,的对角线、相交于点,.
(1)求证:;
(2)若,连接、,判断四边形的形状,并说明理由.
17、(10分)如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠1.
(1)求证:AE=CF;
(1)求证:四边形EBFD是平行四边形.
18、(10分)中国的高铁技术已经然走在了世界前列,2018年的“复兴号”高铁列车较“和谐号”速度增加每小时70公里.上海火车站到北京站铁路距离约为1400公里,如果选择“复兴号”高铁,全程可以少用1小时,求上海火车站到北京火车站的“复兴号”运行时间.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,已知,,,,若线段可由线段围绕旋转中心旋转而得,则旋转中心的坐标是______.
20、(4分)如图,在中,,,,将折叠,使点与点重合,得到折痕,则的周长为_____.
21、(4分)化简的结果是_______.
22、(4分)当________时,方程无解.
23、(4分)为响应“低碳生活”的号召,李明决定每天骑自行车上学,有一天李明骑了1000米后,自行车发生了故障,修车耽误了5分钟,车修好后李明继续骑行,用了8分钟骑行了剩余的800米,到达学校(假设在骑车过程中匀速行驶).若设他从家开始去学校的时间为t(分钟),离家的路程为y(千米),则y与t(15<t≤23)的函数关系为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.
25、(10分)如图,已知直线y=x+2交x轴于点A,交y轴于点B,
(1)求A,B两点的坐标;
(2)已知点C是线段AB上的一点,当S△AOC= S△AOB时,求直线OC的解析式。
26、(12分)图①、图②、图③都是由8个大小完全相同的矩形拼成无重叠、无缝隙的图形,每个小矩形的顶点叫做格点,线段的端点都在格点上. 仅用无刻度的直尺分别在下列方框内完成作图,保留作图痕迹.
(1)在图①中,作线段的一条垂线,点、在格点上.
(2)在图②、图③中,以为边,另外两个顶点在格点上,各画一个平行四边形,所画的两个平行四边形不完全重合.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.
【详解】
解:正五边形的内角的度数是
正方形的内角是90°,
则∠1=108°-90°=18°.
故选:B.
本题考查了多边形的内角和定理,求得正五边形的内角的度数是关键.
2、A
【解析】
运用二次根式的相关定义、运算、化简即可求解.
【详解】
解:A:是求的算术平方根,即为3,故正确;
B:2﹣=,故B错误;
C:上下同乘以,应为,故C错误;
D:的平方应为3,而不是6,故D错误.
故答案为A.
本题主要考查二次根式的定义、运算和化简;考查知识点较多,扎实的基础是解答本题的关键.
3、A
【解析】
由t=0时s=1000的实际意义可判断①;
由8≤t≤10所对应的图象表示小刚跑步阶段,根据速度=路程÷时间可判断②;
根据t=10时s=0可判断③;
总路程除以所用总时间即可判断④.
【详解】
解:①当t=0时,s=1000,即小刚家离学校的距离是1000m,故①正确;
②小刚跑步阶段的速度是=300(m/min),故②正确;
③当s=0时,t=10,即小刚回到家时已放学10min,故③正确;
④小刚从学校回到家的平均速度是=100(m/min),故④正确;
故选:A.
本题考查利用函数的图象解决实际问题,正确理解题意、理解函数图象横、纵坐标表示的意义是解题的关键.
4、C
【解析】
试题分析:根据k<1,正比例函数的函数值y随x的增大而减小解答. ∵直线y=kx的k<1,
∴函数值y随x的增大而减小, ∵x1<x2, ∴y1>y2, ∴y1﹣y2>1.
考点:(1)、一次函数图象上点的坐标特征;(2)、正比例函数的图象.
5、B
【解析】
根据平均数、方差、众数、中位数的定义以及计算公式分别进行解答即可.
【详解】
解:A、这组数据的平均数是:(2+1+3+2+3)÷5=2.2,故正确;
B、这组数据的方差是:[(2−2.2)2+(1−2.2)2+(3−2.2)2+(2−2.2)2+(3−2.2)2]=0.56,故错误;
C、3和2都出现了2次,出现的次数最多,则众数是3和2,故正确;
D、把这组数据从小到大排列为:1,2,2,3,3,中位数是2,故正确.
故选:B.
此题主要考查了平均数、方差、众数、中位数的含义和求法,熟练掌握定义和求法是解题的关键,是一道基础题
6、A
【解析】
根据二次根式的性质解答.
【详解】
解:.
故选:A.
本题主要考查了根据二次根式的性质化简.解题的关键是掌握二次根式的性质.
7、D
【解析】
轴对称图形是把一个图形沿一条直线折叠,直线两旁的部分能够互相重合,判断四个图形,看看哪些是轴对称图形;中心对称图形是把一个图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合,判断四个图形,看看哪些是中心对称图形;综合上述分析,即可选出既是中心对称图形又是轴对称图形的图形,从而解答本题.
【详解】
A、是轴对称图形,但不是中心对称图形,不符合题意;
B、不是轴对称图形,是中心对称图形,不符合题意;
C、是轴对称图形,但不是中心对称图形,不符合题意;
D、既是中心对称图形,又是轴对称图形,符合题意.
故选D.
此题考查中心对称图形和轴对称图形,解决本题的关键是熟练地掌握中心对称图形和轴对称图形的判断方法;
8、C
【解析】
根据一次函数的平移规律即可解答.
【详解】
∵原直线的k=2,b=﹣1;向上平移2个单位长度,得到了新直线,
∴新直线的k=2,b=﹣1+2=1.
∴新直线的解析式为y=2x+1.
故选C.
本题考查了一次函数的平移规律,熟知一次函数的平移规律是解决问题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、①②③
【解析】
由抛物线开口方向得到a<0,由抛物线与y轴交点位置得到c>0,则可对①进行判断;利用抛物线的对称轴方程可对②进行判断;由抛物线与x轴的交点个数可对③进行判断;由于x=-1时函数值小于0,则可对④进行判断.
【详解】
解:∵抛物线开口向下,
∴a<0,
∵抛物线与y轴交点位于y轴正半轴,
∴c>0,所以①正确;
∵抛物线的对称轴为直线,
∴b=-2a,即2a+b=0,所以②正确;
∵抛物线与x轴有两个不同的交点,
∴b2-4ac>0,所以③正确;
∵x=-1时,y<0,
∴a-b+c<0,所以④错误.
故答案为:①②③.
本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
10、
【解析】
设y=kx,把点(1,﹣2)代入即可(答案不唯一).
【详解】
设y=kx,把点(1,﹣2)代入,得
k=-2,
∴(答案不唯一).
故答案为:.
本题考查了待定系数法求一次函数解析式,利用待定系数法求函数解析式的一般步骤:①先设出函数解析式的一般形式,如求一次函数的解析式时,先设y=kx+b(k≠0);②将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.
11、2
【解析】
分析:由于AE即是三角形ABO的中线也是高,得到三角形ABO是等腰三角形,所以AB=AO,再根据矩形的性质即可求出答案.
详解:∵E为OB中点,且AE⊥BD,
∴AB=AO,
∵四边形ABCD为矩形,∴CD=AB=AO=BO=BD=2.
点睛:本题考查了等腰三角形的判定和矩形的性质,解题的难点在于判定三角形ABO是等腰三角形.
12、36
【解析】
根据题意作出图形,再根据平行四边形及含30°的直角三角形的性质进行求解.
【详解】
解:如图,过点D作DE⊥AB于点E,
∵∠A=30°,DE⊥AB
∴DE=AD=4
∴S▱ABCD=BA×DE=9×4=36
故答案为36
此题主要考查平行四边形的计算,解题的关键是作出图形求出DE.
13、1<m<1.
【解析】
直线y=﹣x﹣3向上平移m个单位后可得:y=﹣x﹣3+m,求出直线y=﹣x﹣3+m与直线y=2x+4的交点,再由此点在第二象限可得出m的取值范围.
【详解】
解:直线y=﹣x﹣3向上平移m个单位后可得:y=﹣x﹣3+m,
联立两直线解析式得:,
解得:,
即交点坐标为(,),
∵交点在第二象限,
∴,
解得:1<m<1.
故答案为1<m<1.
本题考查一次函数图象与几何变换、两直线的交点坐标,注意第二象限的点的横坐标小于2、纵坐标大于2.
三、解答题(本大题共5个小题,共48分)
14、(1)m=12,n=0.08;(2)50;(3)0.68.
【解析】
(1)根据任意一组频数和频率即可得出总频数,即总频数为,即可得出m=12,进而求得n=0.08;
补充完整的频数直方图见详解;
(2)根据任意一组频数和频率即可得出总频数,即总频数为;
(3)根据统计图表,该小区用水量不超过15的家庭的频率即为0.12+0.24+0.32=0.68.
【详解】
解:(1)∵频数为6,频率为0.12
∴总频数为
∴m=50-6-16-10-4-2=12
∴n=4÷50=0.08
数据求出后,即可将频数直方图补充完整,如下图所示:
(2)根据(1)中即可得知,总频数为
答:该班调查的家庭总户数是50户;
(3)根据统计图表,该小区用水量不超过15的家庭的频率即为0.12+0.24+0.32=0.68.
此题主要考查统计图和频数分布表的性质,熟练掌握其特征,即可得解.
15、(1)∠B=30°;(2)详见解析.
【解析】
(1)根据余角的性质得到∠ECF=∠CAF,求得∠CAD=2∠DCB,由CD是斜边AB上的中线,得到CD=BD,推出∠CAB=2∠B,于是得到结论;
(2)根据直角三角形的性质即可得到结论.
【详解】
解:(1)∵AE⊥CD,
∴∠AFC=∠ACB=90°,
∴∠CAF+∠ACF=∠ACF+∠ECF=90°,
∴∠ECF=∠CAF,
∵∠EAD=∠DCB,
∴∠CAD=2∠DCB,
∵CD是斜边AB上的中线,
∴CD=BD,
∴∠B=∠DCB,
∴∠CAB=2∠B,
∵∠B+∠CAB=90°,
∴∠B=30°;
(2)∵∠B=∠BAE=∠CAE=30°,
∴AE=BE,CE=AE,
∴BC=3CE.
本题主要考查了直角三角形的性质,解题的关键是灵活运用直角三角形的性质进行边角关系的推导.
16、(1)证明见解析;(2)矩形,理由见解析;
【解析】
(1)根据平行四边形的性质得出BO=DO,AO=OC,求出OE=OF,根据全等三角形的判定定理推出即可;
(2)根先推出四边形EBFD是平行四边形,再根据矩形的判定得出即可.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴BO=DO,AO=OC,
∵AE=CF,
∴AO-AE=OC-CF,
即:OE=OF,
在△BOE和△DOF中,
∴△BOE≌△DOF(SAS);
(2)矩形,
证明:∵BO=DO,OE=OF,
∴四边形BEDF是平行四边形,
∵BD=EF,
∴平行四边形BEDF是矩形.
此题考查平行四边形的性质和判定,全等三角形的判定和矩形的判定,能灵活运用定理进行推理是解题的关键.
17、(1)见详解;(1)见详解
【解析】
(1)通过证明△ADE≌△CBF,由全等三角的对应边相等证得AE=CF.
(1)根据平行四边形的判定定理:对边平行且相等的四边形是平行四边形证得结论.
【详解】
证明:(1)如图:
∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,∠3=∠4
∵∠1=∠3+∠5,∠1=∠4+∠6,
∴∠1=∠1
∴∠5=∠6
∵在△ADE与△CBF中,∠3=∠4,AD=BC,∠5=∠6,
∴△ADE≌△CBF(ASA)
∴AE=CF
(1)∵∠1=∠1,
∴DE∥BF
又∵由(1)知△ADE≌△CBF,
∴DE=BF
∴四边形EBFD是平行四边形
18、4小时.
【解析】
设复兴号用时x小时,根据“复兴号”较“和谐号”速度增加每小时70公里,列出方程即可.
【详解】
解:设复兴号用时x小时,则和谐号用时(x+1)小时,根据题意得:
=70+,
解得:x=4或x=-5(舍去),
答:上海火车站到北京火车站的“复兴号”运行时间为4小时.
故答案为:4小时.
本题考查了分式方程的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、或
【解析】
根据旋转的性质,对应点到旋转中心的距离相等,可知,只要连接两组对应点,作出对应点所连线段的两条垂直平分线,其交点即为旋转中心.
【详解】
解:如图:
连接AC,BD,作他们的垂直平分线交于点P,其坐标为(1,-1)
同理,另一旋转中心为(1,1)
故答案为或
本题主要考查了旋转中心的确定,即出对应点所连线段的两条垂直平分线,其交点即为旋转中心.
20、
【解析】
首先利用勾股定理求得BC的长,然后根据折叠的性质可以得到AE=EC,则△ABE的周长=AB+BC,即可求解.
【详解】
解:在直角△ABC中,BC= =8cm,
∵将折叠,使点与点重合,
∵AE=EC,
∴△ABE的周长=AB+BE+AE=AB+BE+EC=AB+BC=6+8=14(cm).
故答案是:14 cm.
本题考查了轴对称(折叠)的性质以及勾股定理,正确理解折叠中相等的线段是关键.
21、4
【解析】
根据算术平方根的定义解答即可.
【详解】
=4.
故答案为:4.
本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.正数a有一个正的算术平方根, 0的算术平方根是0,负数没有算术平方根.
22、1
【解析】
根据分式方程无解,得到1−x= 0,求出x的值,分式方程去分母转化为整式方程,将x的值代入整式方程计算即可求出m的值.
【详解】
解:分式方程去分母得:m=2(1−x)+1,
由分式方程无解,得到1−x=0,即x=1,
代入整式方程得:m=1.
故答案为:1.
此题考查了分式方程的解,将分式方程转化为整式方程是解本题的关键.
23、y=100t-500(15<t≤23)
【解析】
分析:
由题意可知,李明骑车的速度为100米/分钟,由此可知他从家到学校共用去了23分钟,其中自行车出故障前行驶了10分钟,自行车修好后行驶了8分钟,由此可知当时,y与t的函数关系为:.
详解:
∵车修好后,李明用8分钟骑行了800米,且骑车过程是匀速行驶的,
∴李明整个上学过程中的骑车速度为:100米/分钟,
∴在自行车出故障前共用时:1000÷100=10(分钟),
∵修车用了5分钟,
∴当时,是指小明车修好后出发前往学校所用的时间,
∴由题意可得:(),
化简得:().
故答案为:().
点睛:“由题意得到李明骑车的速度为100米/分钟,求时,y与t间的函数关系是求自行车修好后到家的距离与行驶的时间间的函数关系”是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)
【解析】
(1)连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的切线;
(2)由∠ACD的度数求出∠OCA为60°,确定出三角形AOC为等边三角形,由半径为2求出AC的长,在直角三角形ACD中,由30度所对的直角边等于斜边的一半求出AD的长,再利用勾股定理求出CD的长,由扇形AOC面积减去三角形AOC面积求出弓形的面积,再由三角形ACD面积减去弓形面积即可求出阴影部分面积.
【详解】
(1)连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵∠DAC=∠BAC,
∴∠DAC=∠OCA,
∴AD∥OC,
∵AD⊥EF,
∴OC⊥EF,
则EF为圆O的切线;
(2)∵∠ACD=30°,∠ADC=90°,
∴∠CAD=∠OCA=60°,
∴△AOC为等边三角形,
∴AC=OC=OA=2,
在Rt△ACD中,∠ACD=30°,
∴AD=AC=1,根据勾股定理得:CD=,
∴S阴影=S△ACD-(S扇形AOC-S△AOC)=×1×-()=.
考点:1.切线的判定;2.扇形面积的计算.
25、(1)点A的坐标为(-4,0),点B的坐标为(0,2);(2)y=-x
【解析】
(1)分别令y=0, x=0, 代入一次函数式,即可求出A、B点的坐标;
(2)先由OA和OB的长求出△AOB的面积,设C点坐标为(m,n),△AOC和△AOB等底不同高, 由 S△AOC= S△AOB 列式,求出C点的纵坐标n,把n代入一次函数式求出m, 从而得出C点坐标, 设直线OC的解析式为y=kx ,根据C点坐标用待定系数法求出k, 即可确定直线OC的函数解析式.
【详解】
(1)解:∵直线y= x+2,
∴当x=0时,y=2,当y=0时,x=-4
∵直线y= x+2交x轴于点A,交y轴于点B,
∴点A的坐标为(-4,0),点B的坐标为(0,2)
(2)解:由(1)知,点A的坐标为(-4,0),点B的坐标为(0,2),
∴OA=4,OB=2,
∴S△AOB= =4
S△AOC= S△AOB ,
∴S△AOC=2
设点C的坐标为(m,n)
∴ =2,得n=1,
∵点C在线段AB上,
∴1= m+2,得m=-2
∴点C的坐标为(-2,1)
设直线OC的解析式为y=kx
-2k=1,得k=- ,
即直线OC的函数解析式为y=-x
此题主要考查一次函数的应用,解题的关键是熟知一次函数的图像与性质及三角形的面积公式.
26、(1)见解析;(2)见解析.
【解析】
(1)首先根据已知条件,可判定,即可得出∠ABC=∠MND,∠BAC=∠NMD,然后根据∠ABN+∠ABC=90°,得出∠ABN+∠MND=90°,即可得解;
(2)根据平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形,即可画出平行四边形.
【详解】
(1)线段MN如图所示:
由已知条件,得∠ACB=∠MDN=90°,AC=MD,BC=ND,
∴
∴∠ABC=∠MND,∠BAC=∠NMD
又∵∠ABN+∠ABC=90°
∴∠ABN+∠MND=90°
即MN⊥AB.
(2)如图所示:
根据已知条件,平行四边形的性质,画出两个不完全重合的平行四边形.
此题主要考查根据全等三角形的性质进行等角转换,以及平行四边形的判定定理,熟练掌握,即可解题.
题号
一
二
三
四
五
总分
得分
批阅人
月均用水量x(t)
频数(户)
频率
0<x≤5
6
0.12
5<x≤10
m
0.24
10<x≤15
16
0.32
15<x≤20
10
0.20
20<x≤25
4
n
25<x≤30
2
0.04
2024-2025学年福建省福州市延安中学数学九年级第一学期开学调研模拟试题【含答案】: 这是一份2024-2025学年福建省福州市延安中学数学九年级第一学期开学调研模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年福建省福州十中学数学九上开学调研模拟试题【含答案】: 这是一份2024-2025学年福建省福州十中学数学九上开学调研模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年福建省福州市六校联考九上数学开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年福建省福州市六校联考九上数学开学学业水平测试模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。