2024-2025学年安徽省铜陵市名校数学九年级第一学期开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)估计﹣÷2的运算结果在哪两个整数之间( )
A.0和1B.1和2C.2和3D.3和4
2、(4分)如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=( )
A.12B.8C.4D.3
3、(4分)运用分式基本性质,等式中缺少的分子为( )
A.aB.2aC.3aD.4a
4、(4分)多项式4x2﹣4与多项式x2﹣2x+1的公因式是( )
A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2
5、(4分)下列地铁标志图形中,属于中心对称图形的是( )
A.B.C.D.
6、(4分)如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为 ( )
A.105°B.112.5°C.120°D.135°
7、(4分)以下各组数中,能作为直角三角形的三边长的是
A.6,6,7B.6,7,8C.6,8,10D.6,8,9
8、(4分)甲、乙、丙三个旅行团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是28,18.6,1.1.导游小李最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选( )
A.甲团B.乙团C.丙团D.三个团都一样
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)二次函数的最大值是____________.
10、(4分)在中,,,点在上,.若点是边上异于点的另一个点,且,则的值为______.
11、(4分)一次函数的图象如图所示,不等式的解集为__________.
12、(4分)如图,在▱ABCD中,分别设P,Q,E,F为边AB,BC,AD,CD的中点,设T为线段EF的三等分点,则△PQT与▱ABCD的面积之比是______.
13、(4分)如图,在正方形ABCD中,AC、BD相交于点O,E、F分别为BC、CD上的两点,,AE、BF分别交BD、AC于M、N两点,连OE、下列结论:;;;,其中正确的序数是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AF⊥BD,CE⊥BD,垂足分别为E、F;
(1)连结AE、CF,得四边形AFCE,试判断四边形AFCE是下列图形中的哪一种?
①平行四边形;②菱形;③矩形;
(2)请证明你的结论;
15、(8分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
(1)请将下表补充完整:(参考公式:方差S2= [(x1﹣)2+(x2﹣)2+…+(xn﹣)2])
(2)请从下列三个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看, 的成绩好些;
②从平均数和中位数相结合看, 的成绩好些;
③若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.
16、(8分)某公司销售部有销售人员14人,为提高工作效率和员工的积极性,准备实行“每月定额销售,超额有奖”的措施.调查这14位销售人员某月的销售量,获得数据如下表:
(1)求这14位营销人员该月销售量的平均数和中位数
(2)如果你是该公司的销售部管理者,你将如何确定这个定额?请说明理由.
17、(10分)某车间加工1200个零件后,采用新工艺,工效提升了20%,这样加工同样多的零件就少用10h,采用新工艺前、后每小时分别加工多少个零件?
18、(10分)计算:
(1)-|5-|+; (2)-(2+)2
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知在同一坐标系中,某正比例函数与某反比例函数的图像交于 A,B 两点,若点 A 的坐标为(-1,4), 则点 B 的坐标为___.
20、(4分)若关于的一元二次方程没有实数根,则的取值范围为__________.
21、(4分)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于(________)
22、(4分)等边三角形的边长是4,则高AD_________ (结果精确到0.1)
23、(4分)不等式组的最小整数解是___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)运动服装店销售某品牌S号,M号,L号,XL号,XXL号五种不同型号服装,随机统计该品牌运动服装一周的销售情况并绘制如图所示不完整统计图.
(1)L号运动服一周的销售所占百分比为 .
(2)请补全条形统计图;
(3)服装店老板打算再次购进该品牌服饰共600件,根据各种型号的销售情况,你认为购进XL号约多少件比较合适,请计算说明.
25、(10分)如图,在4×3的正方形网格中,每个小正方形的边长都为1.
(1)线段AB的长为 ;
(2)在图中作出线段EF,使得EF的长为,判断AB,CD,EF三条线段能否构成直角三角形,并说明理由.
26、(12分)甲、乙两名同学进入八年级后,某科6次考试成绩如图所示:
(1)请根据统计图填写下表:
(2)请你分别从以下两个不同的方面对甲、乙两名同学6次考试成绩进行分析,你认为反映出什么问题?
①从平均数和方差相结合分析;
②从折线图上两名同学分数的走势上分析.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先估算出的大致范围,然后再计算出÷2的大小,从而得到问题的答案.
【详解】
25<32<31,∴5<<1.
原式=﹣2÷2=﹣2,∴3<﹣÷2<2.
故选D.
本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键.
2、C
【解析】
过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.
【详解】
延长EP、FP分别交AB、BC于G、H,
则由PD∥AB,PE∥BC,PF∥AC,可得,
四边形PGBD,EPHC是平行四边形,
∴PG=BD,PE=HC,
又△ABC是等边三角形,
又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,
∴PF=PG=BD,PD=DH,
又△ABC的周长为12,
∴PD+PE+PF=DH+HC+BD=BC=×12=4,
故选C.
本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.
3、D
【解析】
根据分式的基本性质即可求出答案.
【详解】
解:,
故选择:D.
本题考查分式的运算,解题的关键是熟练运用分式的基本性质,本题属于基础题型.
4、A
【解析】试题分析:分别将多项式 与多项式 进行因式分解,再寻找他们的公因式.
本题解析:多项式: ,多项式: ,
则两多项式的公因式为x-1.故选A.
5、C
【解析】
根据中心对称图形的定义即可作出判断.
【详解】
A、不是中心对称图形,故选项错误;
B、不是中心对称图形,故选项错误;
C、是中心对称图形,故选项正确;
D、不是中心对称图形,故选项错误.
故选C.
本题主要考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后两部分重合.
6、D
【解析】
连结PP′,如图,先根据旋转的性质得BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,则可判断△PBP′为等腰直角三角形,于是有∠BPP′=45°,PP′=PB=2,然后根据勾股定理的逆定理证明△APP′为直角三角形,得到∠APP′=90°,所以∠BPA=∠BPP′+∠APP′=135°,则∠BP′C=135°.
【详解】
解:连结PP′,如图,
∵四边形ABCD为正方形,
∴∠ABC=90°,BA=BC,
∴△ABP绕点B顺时针旋转90°得到△CBP′,
∴BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,
∴△PBP′为等腰直角三角形,
∴∠BPP′=45°,PP′=PB=2,
在△APP′中,∵PA=1,PP′=2,AP′=3,
∴PA2+PP′2=AP′2,
∴△APP′为直角三角形,∠APP′=90°,
∴∠BPA=∠BPP′+∠APP′=45°+90°=135°,
∴∠BP′C=135°.
故选D.
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质和勾股定理的逆定理.
7、C
【解析】
分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.
【详解】
解:A、,不能构成直角三角形;
B、,不能构成直角三角形;
C、,能构成直角三角形;
D、,不能构成直角三角形;
故选C.
考查了勾股数的判定方法,比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.
8、C
【解析】
根据方差的意义即可得.
【详解】
方差越小,表示游客年龄波动越小、越相近
则他应该选择丙团
故选:C.
本题考查了方差的意义,掌握理解方差的意义是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-5
【解析】
根据二次函数的性质求解即可.
【详解】
∵的a=-2<0,
∴当x=1时,有最大值-5.
故答案为-5.
本题考查了二次函数的最值:二次函数y=ax2+bx+c,当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=-时,y=;(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=-时,y=.
10、24或21或
【解析】
情况1:连接EP交AC于点H,依据先证明是菱形,再根据菱形的性质可得到∠ECH=∠PCH=10°,然后依据SAS可证明△ECH≌△PCH,则∠EHC=∠PHC=90°,最后依据EP=2EH=2sin10°•EC求解即可.
情况2:如图2所示:△ECP为等腰直角三角形,则=EC=2.此时,=24
情况2:如图2:过点P′作P′F⊥BC.通过解直角三角形可以解得FC ,EF,再在Rt△P′EF中,利用勾股定理可以求得.
【详解】
解:情况1:如图所示:连接EP交AC于点H.
∵在中,
∴是菱形
∵菱形ABCD中,∠B=10°,
∴∠BCD=120°,∠ECH=∠PCH=10°.
在△ECH和△PCH中
,
∴△ECH≌△PCH.
∴∠EHC=∠PHC=90°,EH=PH.
∴EP=2EH=2sin10°•EC=2××2=1.
∴=21
情况2:如图2所示:△ECP为等腰直角三角形,则=EC=2.
∴=24
情况2:如图2:过点P′作P′F⊥BC.
∵P′C=2,BC=4,∠B=10°,
∴P′C⊥AB.
∴∠BCP′=20°.
∴FC=×2=2,P′F=,EF=2-2.
∴=,
故答案为:24或21或.
本题主要考查的是菱形的性质,全等三角形的判定和性质,以及解直角三角形和勾股定理得结合,是综合性题目,难度较大.
11、
【解析】
首先根据直线与坐标轴的交点求解直线的解析式,在求解不等式即可.
【详解】
解:根据图象可得:
解得:
所以可得一次函数的直线方程为:
所以可得 ,解得:
故答案为
本题主要考查一次函数求解解析式,关键在于根据待定系数求解函数的解析式.
12、1:1
【解析】
如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S,证明四边形EFQP是平行四边形,求出S平行四边形EFQP=1S和S△TPQ=2S即可解决问题.
【详解】
解:如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S.
∵DE=AE,DF=FC,
∴EF∥AC,EF:AC=1:2,
∴S△DEF=S△DAC=×1S=S,
同理可证PQ∥AC,PQ:AC=1:2,S△CFQ=S△PQB=S△APE=S,
∴四边形EFQP是平行四边形,
∴S平行四边形EFQP=1S,
∴S△TPQ=S平行四边形EFQP=2S,
∴S△TPQ:S平行四边形ABCD=2S:8S=1:1,
故答案为1:1.
本题考查的是平行四边形的综合运用,熟练掌握平行四边形的性质和相似三角形的性质是解题的关键.
13、
【解析】
易证得≌,则可证得结论正确;
由≌,可得,证得,选项正确;
证明是等腰直角三角形,求得选项正确;
证明≌,根据正方形被对角线将面积四等分,即可得出选项正确.
【详解】
解:四边形ABCD是正方形,
,,
在和中,
,
≌,
,
故正确;
由知:≌,
,
,
,
故正确;
四边形ABCD是正方形,
,,
是等腰直角三角形,
,
,
故正确;
四边形ABCD是正方形,
,,
在和中,
,
≌,
,
,
故正确;
故答案为:.
此题属于四边形的综合题考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质注意掌握全等三角形的判定与性质是解此题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)平行四边形(2)证明见解析.
【解析】
易证△ABF≌ △CDE,再利用对边平行且相等得出四边形AFCE为平行四边形.
【详解】
解:(1)平行四边形;
(2)证明:平行四边形ABCD中,
AO=CO,
∵AF⊥BD,CE⊥BD,
∴∠AFO=∠CEO=90°,
又∠AOF=∠COE,
∴△ABF≌△CDE(AAS)
∴AF=CE
∵AF∥CE
∴四边形AFCE为平行四边形.
15、(1)1.2,7,7.5;(2)甲,乙,乙,理由见解析.
【解析】
分析: (1)根据统计表,结合平均数、方差、中位数的定义,即可求出需要填写的内容.
(2)①可分别从平均数和方差两方面着手进行比较;
②可分别从平均数和中位数两方面着手进行比较;
③可从具有培养价值方面说明理由.
详解:
解:(1)甲的方差[(9﹣7)2+(5﹣7)2+4×(7﹣7)2+2×(8﹣7)2+2×(6﹣7)2]=1.2,
乙的平均数:(2+4+6+8+7+7+8+9+9+10)÷10=7,
乙的中位数:(7+8)÷2=7.5,
填表如下:
(2)①从平均数和方差相结合看,甲的成绩好些;
②从平均数和中位数相结合看,乙的成绩好些;
③选乙参加.
理由:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,应选乙.
故答案为:(1)1.2,7,7.5;(2)①甲;②乙.
点睛: 本题考查了折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图能清楚地看出数据的变化情况.
16、(1)平均数38(件);中位数:30(件);(2)答案见解析
【解析】
(1)按照平均数,中位数的定义分别求得.
(2)根据平均数,中位数的意义回答.
【详解】
(1)解:平均数=38(件)
中位数:30(件)
(2)解:定额为38件,因为平均数反映平均程度;
或:定额为30件,因为中位数可以反映一半员工的工作状况,把一半以上作为目标;
或:除去最高分、最低分的平均数为=30.75≈31(件)
因为除去极端情形较合理.
本题考查了学生对平均数、中位数的计算及运用其进行分析的能力.
17、采用新工艺前每时加工20个零件,采用新工艺后每时加工1个零件.
【解析】
设采用新工艺前每时加工x个零件,那么采用新工艺后每时加工1.2x个零件,根据时间=零件数÷每小时加工零件数,由等量关系:加工同样多的零件1200个少用10h,可列方程求解.
【详解】
设采用新工艺前每时加工x个零件,则采用新工艺后每时加工1.2x个零件,依题意有
,
解得x=20,
经检验:x=20是原分式方程的解,且符合题意,
则1.2x=1.
答:采用新工艺前每时加工20个零件,采用新工艺后每时加工1个零件.
本题考查分式方程的应用和理解题意能力,关键是设出采用新工艺之前每小时加工x个,然后表示出采用新工艺后每小时加工多少个,再以时间做为等量关系列方程求解.
18、(1)13+4;(2)-1.
【解析】
(1)先把二次根式化简,然后去绝对值后合并即可;
(2)利用分母有理化和完全平方公式计算.
【详解】
解:(1)原式=3-(5-)+18
=3-5++18
=13+4;
(2)原式=4-(4+4+3)
=4-1-4
=-1.
故答案为:(1)13+4;(2)-1.
本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、 (1,−4)
【解析】
根据反比例函数图象上点的坐标特征,正比例函数与反比例函数的两交点坐标关于原点对称.
【详解】
∵反比例函数是中心对称图形,正比例函数与反比例函数的图象的两个交点关于原点对称,
∵一个交点的坐标为(−1,4),
∴它的另一个交点的坐标是(1,−4),
故答案为:(1,−4).
本题考查反比例函数图象的对称性,解题的关键是掌握反比例函数图象的对称性.
20、
【解析】
根据方程的系数结合根的判别式即可得出△=4-4m<0,解之即可得出结论.
【详解】
∵方程x2+2x+m=0没有实数根,
∴△=22-4m=4-4m<0,
解得:m>1.
故答案为:m>1.
本题考查了根的判别式以及解一元一次不等式,熟练掌握“当△<0时,方程无实数根”是解题的关键.
21、-1
【解析】
先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.
【详解】
∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣1.
故答案为:-1.
本题考查了函数值,解题的关键是掌握函数值的计算方法.
22、3.1
【解析】
根据等边三角形的性质及勾股定理进行计算即可.
【详解】
如图,三角形ABC为等边三角形,AD⊥BC,AB=4,
∵三角形ABC为等边三角形,AD⊥BC,
∴BD=CD=2,
在中,.
故答案为:3.1.
本题考查等边三角形的性质和勾股定理,掌握“三线合一”的性质及勾股定理是解题关键.
23、-1
【解析】
分别解两个不等式,得到不等式组的解集,再从解集中找到最小整数解.
【详解】
解不等式得,
解不等式得
∴不等式组的解集为
∴不等式组的最小整数解为-1
故答案为:-1.
本题考查求不等式组的最小整数解,熟练掌握解不等式,并由“大小小大取中间”确定不等式组的解集是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)20%;(2)详见解析;(3)96.
【解析】
(1)利用百分比之和为1,计算即可;
(2)求出M、L的件数,画出条形图即可;
(3)利用样本估计总体的思想解决问题即可;
【详解】
解:(1)L号运动服一周的销售所占百分比为1﹣16%﹣8%﹣30%﹣26%=20%.
故答案为20%.
(2)总数=13÷26%=50,
M有50×30%=15,L有50×20%=10,
条形统计图如图所示:
(3)购进XL号约600×16%=96(件)比较合适.
本题考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
25、(1);(2)见解析。
【解析】
(1)利用勾股定理求出AB的长即可;
(2)根据勾股定理的逆定理,即可作出判断.
【详解】
(1)AB=;
(2)如图,EF=,CD=,
∵CD2+AB2=8+5=13,EF2=13,
∴CD2+AB2=EF2,
∴以AB、CD、EF三条线可以组成直角三角形.
本题考查了勾股定理、勾股定理的逆定理,充分利用网格是解题的关键.
26、(1)125,75,75,70;(2)①见解析;②见解析.
【解析】
(1)根据平均数、方差、中位数、众数的概念以及求解方法分别进行求解即可得;
(2)①根据平均数以及方差的大小关系进行比较分析即可;
②根据折线图的走势进行分析即可.
【详解】
(1)甲方差:,
甲的中位数:75,
乙的平均数:,
乙的众数为70,
故答案为:125,75,75,70;
(2)①从平均数看,甲同学的成绩比乙同学稍好,但是从方差看,乙同学的方差小,乙同学成绩稳定,综合平均数和方差分析,乙同学总体成绩比甲同学好;
②从折线图上两名同学分数的走势,甲同学的成绩在稳步直线上升,属于进步计较快,乙同学的成绩有较大幅度波动,不算稳定.
本题考查了折线统计图,正确理解方差、中位数、平均数、众数的含义是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
平均数
方差
中位数
甲
7
7
乙
5.4
月销售量(件)
145
55
37
30
24
18
人数(人)
1
1
2
5
3
2
平均数
方差
中位数
众数
甲
75
75
乙
33.3
72.5
平均数
方差
中位数
甲
7
1.2
7
乙
7
5.4
7.5
2024-2025学年安徽省宿州埇桥区教育集团四校联考九年级数学第一学期开学统考模拟试题【含答案】: 这是一份2024-2025学年安徽省宿州埇桥区教育集团四校联考九年级数学第一学期开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省宿州十三校数学九上开学统考试题【含答案】: 这是一份2024-2025学年安徽省宿州十三校数学九上开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年安徽省铜陵市枞阳县数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年安徽省铜陵市枞阳县数学九年级第一学期开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。