辽宁省沈阳市第九十九中学2023-2024学年数学八上期末复习检测试题【含解析】
展开
这是一份辽宁省沈阳市第九十九中学2023-2024学年数学八上期末复习检测试题【含解析】,共22页。试卷主要包含了已知函数和,当时,的取值范围是等内容,欢迎下载使用。
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为( )
A.1.6×10﹣9米B.1.6×10﹣7米C.1.6×10﹣8米D.16×10﹣7米
2.下列结论中,错误的有( )
①在Rt△ABC中,已知两边长分别为3和4,则第三边的长为5;
②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;
③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;
④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;
A.0个B.1个C.2个D.3个
3.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:
①线段MN的长;
②△PAB的周长;
③△PMN的面积;
④直线MN,AB之间的距离;
⑤∠APB的大小.
其中会随点P的移动而变化的是( )
A.②③B.②⑤C.①③④D.④⑤
4.已知函数和,当时,的取值范围是( )
A.B.C.D.
5.若一个数的平方根是±8,那么这个数的立方根是( )
A.2B.±4C.4D.±2
6.在、、、中,最简二次根式的个数为( )
A.1个B.2个C.3个D.4个
7.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3B.∠2+∠4=180°C.∠1=∠4D.∠3=∠4
8.如图,在△ABC中,AD是高,AE是角平分线,AF是中线,则下列说法中错误的是( )
A.BF=CFB.∠C+∠CAD=90°C.∠BAF=∠CAFD.
9.如图,BE=CF,AB∥DE,添加下列哪个条件不能证明△ABC≌△DEF的是( )
A.AB=DEB.∠A=DC.AC=DFD.AC∥DF
10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )
A.B.2C.D.2
11.在下列各原命题中,其逆命题为假命题的是( )
A.直角三角形的两个锐角互余
B.直角三角形两条直角边的平方和等于斜边的平方
C.等腰三角形两个底角相等
D.同角的余角相等
12.如图,AC∥DF,AC=DF,下列条件不能使△ABC≌△DEF的是( )
A.∠A=∠DB.∠B=∠EC.AB=DED.BF=EC
二、填空题(每题4分,共24分)
13.2019年6月,华为第二颗自研7纳米麒麟系列芯片810出炉,7纳米换算为米等于_____米(用科学记数法表示)单位换算方法:1毫米=1000微米,1微米=1000纳米.
14.如图,在中,,,垂直平分,点为直线上的任一点,则周长的最小值是__________
15.若 与 互为相反数,则的值为________________.
16.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=30°,那么∠1+∠2=_____°.
17.在等腰中,AB为腰,AD为中线,,,则的周长为________.
18.若,,则______.
三、解答题(共78分)
19.(8分)在△ABC中,BC=AC,∠C=90°,直角顶点C在x轴上,一锐角顶点B在y轴上.
(1)如图①若AD于垂直x轴,垂足为点D.点C坐标是(-1,0),点A的坐标是(-3,1),求点B的坐标.
(2)如图②,直角边BC在两坐标轴上滑动,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴于E,请猜想BD与AE有怎样的数量关系,并证明你的猜想.
(3)如图③,直角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y轴于F,在滑动的过程中,请猜想OC,AF,OB之间有怎样的关系?并证明你的猜想.
20.(8分)如图,在平面直角坐标系中,点、分别在笫一、二象限,轴于点,连接、、,且
(1)如图1,若,,,探究、之间的数量关系,并证明你的结论
(2)如图2,若,,探究线段、之间的数量关系,并证明你的结论.
21.(8分)阅读材料:要把多项式am+an+bm+bn因式分解,可以先把它进行分组再因式分解:am+an+bm+bn=(??+??)+(??+??)=a(?+?)+b(?+?)=(?+?)(?+?),这种因式分解的方法叫做分组分解法.
(1)请用上述方法因式分解:x2-y2+x-y
(2)已知四个实数a、b、c、d同时满足a2+ac=12k,b2+bc=12k.c2+ac=24k,d2+ad=24k,且a≠b,c≠d,k≠0
①求a+b+c的值;
②请用含a的代数式分别表示b、c、d
22.(10分)某校260名学生参加植树活动,要求每人植树4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.
回答下列问题:
(1)写出条形图中存在的错误,并说明理由;
(2)写出这20名学生每人植树量的众数和中位数;
(3)求这20名学生每人植树量的平均数,并估计这260名学生共植树多少棵?
23.(10分)如图,AD是△ABC的中线,DE是△ADC的高,DF是△ABD的中线,且CE=1,DE=2,AE=1.
(1)∠ADC是直角吗?请说明理由.
(2)求DF的长.
24.(10分)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到,请解答下列问题:
(1)写出图2中所表示的数学等式____________________________________
(2)根据整式乘法的运算法则,通过计算验证上述等式.
(3)利用(1)中得到的结论,解决下面的问题:
若,,则_________.
25.(12分)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=1.
26.在△ABC中,∠ABC=45°,F是高AD与高BE的交点.
(1)求证:△ADC≌△BDF.
(2)连接CF,若CD=4,求CF的长.
参考答案
一、选择题(每题4分,共48分)
1、C
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】∵1纳米=10﹣9米,
∴16纳米表示为:16×10﹣9米=1.6×10﹣8米.
故选C.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
2、C
【分析】根据勾股定理可得①中第三条边长为5或,根据勾股定理逆定理可得②中应该是∠C=90°,根据三角形内角和定理计算出∠C=90°,可得③正确,再根据勾股定理逆定理可得④正确.
【详解】①Rt△ABC中,已知两边分别为3和4,则第三条边长为5,说法错误,第三条边长为5或.
②△ABC的三边长分别为AB,BC,AC,若+=,则∠A=90°,说法错误,应该是∠C=90°.
③△ABC中,若∠A:∠B:∠C=1:5:6,此时∠C=90°,则这个三角形是一个直角三角形,说法正确.
④若三角形的三边比为3:4:5,则该三角形是直角三角形,说法正确.
故选C.
【点睛】
本题考查了直角三角形的判定,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
3、B
【解析】试题分析:
①、MN= AB,所以MN的长度不变;
②、周长C△PAB=(AB+PA+PB),变化;
③、面积S△PMN= S△PAB=×AB·h,其中h为直线l与AB之间的距离,不变;
④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;
⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.
故选B
考点:动点问题,平行线间的距离处处相等,三角形的中位线
4、B
【分析】由题意得到x−2>2x+1,解不等式即可.
【详解】解:∵y1>y2,
∴x−2>2x+1,
解得x
相关试卷
这是一份辽宁省沈阳市沈河区2023-2024学年九上数学期末复习检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列命题为假命题的是,已知点,下列事件中为必然事件的是等内容,欢迎下载使用。
这是一份2023-2024学年辽宁省沈阳市南昌中学九上数学期末教学质量检测试题含答案,共8页。试卷主要包含了下列式子中最简二次根式是,把二次函数化成的形式是下列中的等内容,欢迎下载使用。
这是一份2023-2024学年辽宁省沈阳市第九十五中学九上数学期末调研模拟试题含答案,共8页。试卷主要包含了下列图形中,是中心对称图形的是,抛物线y=2等内容,欢迎下载使用。