终身会员
搜索
    上传资料 赚现金

    [数学][期末]河北省名校联盟2023-2024学年高二下学期期末考试试题(解析版)

    立即下载
    加入资料篮
    [数学][期末]河北省名校联盟2023-2024学年高二下学期期末考试试题(解析版)第1页
    [数学][期末]河北省名校联盟2023-2024学年高二下学期期末考试试题(解析版)第2页
    [数学][期末]河北省名校联盟2023-2024学年高二下学期期末考试试题(解析版)第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    [数学][期末]河北省名校联盟2023-2024学年高二下学期期末考试试题(解析版)

    展开

    这是一份[数学][期末]河北省名校联盟2023-2024学年高二下学期期末考试试题(解析版),共11页。试卷主要包含了本试卷主要考试内容, 已知,则下列判断正确的是, 已知为正实数,则“”是“”的, 定义在上的函数满足,则等内容,欢迎下载使用。
    注意事项:
    1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
    3.考试结束后,将本试卷和答题卡一并交回.
    4.本试卷主要考试内容:集合与常用逻辑用语、不等式、函数与导数.
    一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 若集合,,则( )
    A. B.
    C. D.
    【答案】B
    【解析】由,解得,
    所以,又,
    所以.
    故选:B
    2. 已知命题,命题,则( )
    A. 和都是真命题B. 和都是真命题
    C. 和都是真命题D. 和都是真命题
    【答案】B
    【解析】对于而言,取,则,故是假命题,是真命题.
    对于而言,令,,,
    由零点存在性定理可知,存在,使得,
    故是真命题,是假命题.
    综上,和都是真命题.
    故选:B
    3. 已知函数的导函数为,且,则( )
    A. 2B. C. 1D.
    【答案】A
    【解析】由题意得,令,则,得.
    故选:A
    4. 已知函数在上单调递增,则的取值范围是( )
    A. B. C. D.
    【答案】A
    【解析】由,得,所以的定义域为.
    又在上单调递增,且在上单调递增,
    所以解得,即的取值范围是.
    故选:A
    5. 已知,则下列判断正确的是( )
    A. B.
    C. D.
    【答案】D
    【解析】,故,
    即.
    故选:D
    6. 已知为正实数,则“”是“”的( )
    A.充要条件
    B.充分不必要条件
    C.必要不充分条件
    D.既不充分也不必要条件
    【答案】C
    【解析】若,则,但是,故充分性不成立,
    因为为正实数,
    所以.
    当且仅当时取等,若,则,故必要性成立,
    所以“”是“”的必要不充分条件,故C正确.故选:C
    7. 苏格兰数学家纳皮尔在研究天文学的过程中,为了简化大数之间的计算而发明了对数,利用对数运算可以求出大数的位数.已知,则是( )
    A. 11位数B. 10位数C. 9位数D. 8位数
    【答案】C
    【解析】记,则,则,
    则,故是9位数.故选:C
    8. 若直线是曲线与的公切线,则直线的方程为( )
    A. B.
    C. D.
    【答案】A
    【解析】由,得,由,得.
    设直线与曲线相切于点,与曲线相切于点,则,故.又,
    解得,所以直线过点,斜率为1,即直线的方程为.故选:A
    二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
    9. 如图所示,连接棱长为2的正方体各面的中心得到一个多面体容器,从顶点处向该容器内注水,直至注满水为止.图中水面的高度为,水面对应四边形的面积为,容器内水的体积为,则下列说法正确的是( )
    A. 是的函数B. 是的函数
    C. 是的函数D. 是的函数
    【答案】AC
    【解析】对于A,当水面的高度确定时,水面对应四边形的面积也唯一确定,则是的函数,A正确;
    对于B,当水面对应四边形的面积确定时,水面高度可能出现两种可能,则不是的函数,B错误;
    对于C,随的增大而增大,是的函数,也是的函数,因此是的函数,C正确;
    对于D,当水面对应四边形的面积确定时,可能出现两个值,不是的函数,D错误.
    故选:AC
    10. 定义在上的函数满足,则( )
    A. B.
    C. 为偶函数D. 可能在上单调递增
    【答案】ABD
    【解析】令,则,故A正确;
    令,则,即,
    令,则,即,故B正确;
    令,则,即,
    所以为奇函数,故C错误;
    当时,由,可得,
    令,则,此时在上单调递增,故D正确.
    故选:ABD.
    11. 已知函数,且,则下列说法正确的是( )
    A.
    B.
    C.
    D. 的取值范围为
    【答案】CD
    【解析】结合函数的图象可知,,
    由,得不出,故A错误,
    令,此时,但是,故B错误.
    因为,所以,所以,则,
    又,所以,
    由二次函数性质得在上单调递增,故,所以C正确.
    因为,所以,故,
    令,由指数函数性质得在上单调递增,
    所以的取值范围为,故D正确.
    故选:CD
    12. 已知是函数的极大值点,则__________.
    【答案】
    【解析】由题可知,
    令,则,解得,.
    当或时,,当时,,
    所以的单调递增区间为,单调递减区间为,
    故为极大值点.
    故答案为:.
    13. 已知函数,则不等式的解集为__________.
    【答案】
    【解析】由题可知的定义域为,
    因为,所以是偶函数,
    当时,,
    所以,
    所以在上单调递增.
    由不等式,
    可得,,
    所以,
    解得,
    故不等式的解集为.
    故答案为:.
    14. 若不等式对恒成立,则的最大值为__________.
    【答案】
    【解析】由,
    可得.
    令,则在上单调递增,所以,
    由对恒成立,
    所以,则,
    故,
    当且仅当,即时,等号成立,故的最大值为3.
    故答案为:.
    四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
    15. 已知或.
    (1)若命题是真命题,求实数的取值范围;
    (2)若是的必要不充分条件,求实数的取值范围.
    解:(1)因为命题是真命题,所以命题是假命题,即关于的方程无实数根.
    当时,方程无解,符合题意;当时,,解得.
    故实数的取值范围是.
    (2)由(1)知若命题是真命题,则或.
    因为命题是命题的必要不充分条件,
    所以或或,
    则解得,所以实数的取值范围是.
    16. 已知幂函数为偶函数,且函数满足.
    (1)求函数和的解析式;
    (2)对任意实数恒成立,求的取值范围.
    解:(1)由为幂函数,得,解得或.
    因为为偶函数,所以,
    则.
    由,可得,令,
    则,
    所以.
    (2)由,可得,
    故,,
    令,则,
    当且仅当1,即时,等号成立,
    所以,即,所以的取值范围为.
    17. 已知函数.
    (1)若,求的最小值;
    (2)证明:曲线是中心对称图形.
    解:(1)由,得,
    因为,
    所以在上恒成立,即等价于即可,
    因为,
    当且仅当时,等号成立,所以,故的最小值为.
    (2)由题可知
    所以曲线关于点对称,即曲线是中心对称图形.
    18. 已知函数.
    (1)讨论的导函数的单调性;
    (2)若对任意恒成立,求的取值范围.
    解:(1)由题可知.
    设,则.
    ①当时,上恒成立,
    所以在上单调递增.
    ②当时,令,得,令,得,
    所以在上单调递减,在上单调递增.
    综上所述,当时,是上的增函数,
    当时,在上是减函数,在上是增函数.
    (2)①当时,在上单调递增,,
    则在上单调递增,故成立;
    ②当时,,所以在上单调递增,,
    则单调递增,故成立;
    ③当时,当时,在上单调递减,
    又,所以在上单调递减,则不成立.
    综上,的取值范围为.
    19. 已知函数,若存在实数,使得,则称与为“互补函数”,为“互补数”.
    (1)判断函数与是否为“互补函数”,并说明理由.
    (2)已知函数为“互补函数”,且为“互补数”.
    (i)是否存在,使得?说明理由.
    (ii)若,用的代数式表示的最大值.
    解:(1)因为,则,
    所以在单调递增,在单调递减,则,
    所以,
    因为,则,
    所以在上单调递增,在上单调递减,所以,所以.
    故不存在实数,使得,则与不是“互补函数”.
    (2)(i)存在,使得.
    由,得,
    则,故存在.
    (ii)令,则,
    两式相加可得,
    两式相减可得
    所以,
    故.
    令,
    则.
    .
    因为,所以,
    故当时,,即在上是减函数.
    因为,
    所以的最大值为.

    相关试卷

    河北省名校联盟2023-2024学年高一下学期7月期末考试数学试题(原卷版+解析版):

    这是一份河北省名校联盟2023-2024学年高一下学期7月期末考试数学试题(原卷版+解析版),文件包含河北省名校联盟2023-2024学年高一下学期7月期末考试数学试题原卷版docx、河北省名校联盟2023-2024学年高一下学期7月期末考试数学试题解析版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    河北省名校联盟2023-2024学年高二下学期7月期末考试数学试题(原卷版+解析版):

    这是一份河北省名校联盟2023-2024学年高二下学期7月期末考试数学试题(原卷版+解析版),文件包含河北省名校联盟2023-2024学年高二下学期7月期末考试数学试题原卷版docx、河北省名校联盟2023-2024学年高二下学期7月期末考试数学试题解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。

    河北省名校联盟2023-2024学年高一下学期7月期末考试数学试题(原卷版+解析版):

    这是一份河北省名校联盟2023-2024学年高一下学期7月期末考试数学试题(原卷版+解析版),共6页。试卷主要包含了本试卷主要考试内容等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map