搜索
    上传资料 赚现金
    英语朗读宝

    安徽省安庆市第一中学2023-2024学年高一下学期5月同步测试数学试题(Word版附解析)

    资料中包含下列文件,点击文件名可预览资料内容
    • 解析
      安徽省安庆市第一中学2023-2024学年高一下学期5月同步测试数学试卷 Word版含解析.docx
    • 原卷
      安徽省安庆市第一中学2023-2024学年高一下学期5月同步测试数学试卷 Word版无答案.docx
    安徽省安庆市第一中学2023-2024学年高一下学期5月同步测试数学试卷 Word版含解析第1页
    安徽省安庆市第一中学2023-2024学年高一下学期5月同步测试数学试卷 Word版含解析第2页
    安徽省安庆市第一中学2023-2024学年高一下学期5月同步测试数学试卷 Word版含解析第3页
    安徽省安庆市第一中学2023-2024学年高一下学期5月同步测试数学试卷 Word版无答案第1页
    安徽省安庆市第一中学2023-2024学年高一下学期5月同步测试数学试卷 Word版无答案第2页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省安庆市第一中学2023-2024学年高一下学期5月同步测试数学试题(Word版附解析)

    展开

    这是一份安徽省安庆市第一中学2023-2024学年高一下学期5月同步测试数学试题(Word版附解析),文件包含安徽省安庆市第一中学2023-2024学年高一下学期5月同步测试数学试卷Word版含解析docx、安徽省安庆市第一中学2023-2024学年高一下学期5月同步测试数学试卷Word版无答案docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
    一、单选题
    1. 若复数 满足 ,则 在复平面内对应的点位于( )
    A. 第一象限B. 第二象限C. 第三象限D. 第四象限
    【答案】B
    【解析】
    【分析】根据复数的运算法则进行化简,结合复数的几何意义进行求解即可.
    【详解】由,则,
    所以复数对应的点为,位于第二象限.
    故选:B.
    2. 已知向量,,则“”是“”的( ).
    A. 充分不必要条件B. 必要不充分条件
    C. 充要条件D. 既不充分也不必要条件
    【答案】B
    【解析】
    【分析】利用向量数量积的坐标表示,结合充分性和必要性的定义求解即可.
    【详解】由题意,得,,
    若,则,
    即,解得,
    所以“”推得出“”,即必要性成立,
    但“”推不出 “”,即充分性不成立,
    所以“”是“”的必要不充分条件.
    故选:B.
    3. 如图,是水平放置的在斜二测画法下的直观图.若,,,则的面积为( )

    A. 2B. C. 4D.
    【答案】B
    【解析】
    【分析】先求出,再根据求解即可.
    【详解】由已知得,
    所以.
    故选:B.
    4. 在中,角A,B,C的对边分别为a,b,c.若,则的形状一定是( )
    A. 等腰三角形B. 锐角三角形
    C. 直角三角形D. 钝角三角形
    【答案】A
    【解析】
    【分析】根据给定条件,利用正弦定理边化角,结合和角的正弦推理判断即可.
    【详解】在中,由及正弦定理,得,
    于是,而,则,
    所以是等腰三角形.
    故选:A
    5. 设是三个不同的平面,是两条不同的直线,则下列命题为真命题的是( )
    A. 若,则B. 若,则
    C. 若,则D. 若,则
    【答案】D
    【解析】
    【分析】根据线面位置关系依次讨论各选项即可得答案.
    【详解】对于A选项,若,则或,无法确定与的关系,错误;
    对于B选项,根据面面平行的性质定理,缺少的条件,它们可能平行或异面,错误;
    对于C选项,根据面面垂直的性质定理,缺少条件,平行、相交或均有可能,错误;
    对于D选项,若,则,由面面垂直的判定定理可得,正确.
    故选:D
    6. 已知正六棱锥底面边长为2,体积为,则外接球的体积为( )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】先计算底面面积,进而得到该六棱锥的高,即可得出外接球的球心及半径,根据球的体积公式计算即可.
    【详解】由正六棱锥得,底面为正六边形,设底面的中心为,连接,
    则,底面,为正六棱锥的高,
    所以,
    因为正六棱锥的体积为,所以,即,
    故点为外接球的球心,半径为2,
    故外接球的体积,
    故选:C.
    7. 如图,已知正四棱锥的所有棱长均为2,为棱的中点,则异面直线与所成角的余弦值为( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】根据题中条件连接,取的中点,连接,,作出异面直线所成的角,利用余弦定理求解即可.
    【详解】连接,取的中点,连接,,

    由题意知,,则异面直线与所成角(或其补角),
    在中,,
    则,
    则异面直线与所成角的余弦值为.
    故选:B.
    8. 在正方体中,为的中点,在棱上,且,则过且与垂直的平面截正方体所得截面的面积为( )
    A. 6B. 8C. 12D. 16
    【答案】C
    【解析】
    【分析】先根据空间中线面的位置关系确定截面形状;再根据几何关系即可求解.
    【详解】如图所示,

    在棱上取一点,使得.
    因为在棱上,且,
    所以,.
    由正方体性质可知:平面平面,.
    又因为平面平面,平面,
    所以平面,
    则平面.
    又因为平面
    所以.
    取为的中点,在棱上取一点,使得.
    则,,
    所以.
    因为为的中点,
    则由正方体的性质可得:平面.
    又因为平面,
    所以.
    又因为,平面,平面,
    所以平面.
    因为平面,
    所以.
    同理可得:在棱上取一点,使得时有.
    所以截面为四边形.
    因为平面平面,平面平面,平面平面,
    所以
    又因为,
    所以,,.
    所以等腰梯形为所得截面,梯形的高为.
    所以等腰梯形面积为,
    故选:C.
    【点睛】关键点点睛:本题主要考查空间中线面的位置关系及正方体的截面.解题关键在于熟练运用线、面平行与垂直的判定定理和性质定理来确定截面的形状.
    二、多选题
    9. 对于有如下命题,其中正确的是( )
    A. 若,则为钝角三角形
    B. 若,,且有两解,则的取值范围是
    C. 在锐角中,不等式恒成立
    D. 在中,若,,则必是等边三角形
    【答案】ACD
    【解析】
    【分析】根据正弦定理和余弦定理边角互化判断A,结合图象,根据边角的关系与解的数量判断B,利用锐角三角形角的关系结合诱导公式判断C,由余弦定理可证D.
    【详解】选项A:中,若,
    即,所以由正弦定理得,
    又由余弦定理得,所以,
    为钝角三角形,A正确;
    选项B:如图所示,
    若有两解,则,解得,B错误;
    选项C:因为是锐角三角形,所以,所以,
    又,所以,则,
    又因为在单调递增,所以,C正确;
    选项D:若,,
    由余弦定理,,
    所以,顶角为的等腰三角形为等边三角形,D正确.
    故选:ACD
    10. 如图,从一个正方体中挖掉一个四棱锥,然后从任意面剖开此几何体.下列可能是该几何体的截面的为( )
    A. B. C. D.
    【答案】BCD
    【解析】
    【详解】截面中间是矩形,如果可能话,那么一定是用和正方体底面平行的截面去剖开正方体,并且是从挖去四棱锥的那部分剖开的,但此时剖面中间应该是一个正方形,因此选项A不可能是截面;当从正方体底面的一组相对棱的中点处剖开时,截面正好通过四棱锥顶点,如图①,此时截面形状如选项B,故B可能是该几何体的截面;
    当截面不经过底面一组相对棱的中点处,并和另一组棱平行去剖开正方体时,如图②中截面PDGH位置,截面形状就会如选项C,故C可能是该几何体的截面;
    如图③,按图中截面A1B1C1的位置去剖开正方体,截面就会如选项D,故D可能是该几何体的截面.
    故选BCD.
    11. 如图,正方体的棱长为2,P是直线上的一个动点,则下列结论中正确的是( )

    A. 的最小值为
    B. 的最小值为
    C. 三棱锥的体积为
    D. 以点B为球心,为半径的球面与面在正方体内的交线长为
    【答案】ABD
    【解析】
    【分析】对于选项A,即求正三角形的高,判断为正确;对于选项B,将空间问题平面化即可判定为正确;对于选项C,去一个特殊点,计算其体积,判断为错误;对于选项D,先求出球与平面的交线,然后判断有多少在正方体内,求出其长度即可.
    【详解】对于A,为边长为的等边三角形,的最小值即该等边三角形的高,为,故A正确;

    对于B,如图,将等边绕旋转到与平面共面,
    显然,故B正确;
    对于C,当P在D上时,,故C错误;
    对于D,设点B到平面的距离为d,


    ,,
    以点B为球心,为半径的球面与面在正方体内的交线是以中心为圆心,以为半径的圆,

    如图,圆有一部分在正方体外,,由A得,
    ,所以,,
    所以有圆周在正方体内部,其长度为,故D对.
    故选:ABD.
    三、填空题
    12. 已知平面内非零向量在向量上的投影向量为,且,则与夹角的余弦值为______.
    【答案】
    【解析】
    【分析】利用投影向量公式计算即可.
    【详解】设与的夹角为,
    因为,
    即,又,
    则,即.
    故答案为:.
    13. 如图所示,在棱长为的正方体中,点是平面内的动点,满足,则直线与平面所成角正切值的最大值为__________.

    【答案】
    【解析】
    【分析】在正方体上“堆叠”一个与之全等的正方体,连接、,设在平面的射影为,连接,则即为直线与平面所成角,在平面上的射影为,求出点的轨迹,再结合平面几何的性质即可得解.
    【详解】如图所示,
    在正方体上“堆叠”一个与之全等的正方体,
    连接、,易知四边形是菱形,
    设在平面的射影为,
    由正三棱锥可知,点是△的外心,
    ,则,
    由,得,
    所以,再结合,得,
    从而的轨迹是(平面上)以为圆心,为半径的圆,记为圆,
    同理,在平面(即平面上的射影为的外心,
    连接,则在平面上的射影为,
    进而即为直线与平面所成角,记,
    则,其中为定值,
    而对于,由圆的几何知识可知,当运动到线段且与圆相交时,
    取得最小值,记相交于Q,易知,
    则,
    此时取得最大值为.
    故答案为:.
    【点睛】关键点点睛:本题考查空间中点的轨迹及线面角,关键是确定在平面上的轨迹为圆.
    14. 在棱长为1的正方体中,点是该正方体表面及其内部的一个动点,且平面,则线段的长的取值范围是______.
    【答案】
    【解析】
    【分析】证明平面平面,得点的轨迹,由此可得的最大值为的长,最小值为到平面的距离,求出距离后可得.
    【详解】连接,正方体中由与平行且相等得是平行四边形,从而,
    又平面,平面,所以平面,同理平面,
    又,平面,所以平面平面,
    平面,则平面,
    所以动点的轨迹形成的区域为的边界及内部,的最大值为即的长,
    的最小值为到平面的距离,
    连接交于点,连接交于点,,
    由平面,平面,得,
    又,,平面,所以平面,
    而平面,所以,同理,
    又因为,平面,所以平面,
    同理可证,所以,从而,
    故线段的长的取值范围是.
    故答案为:.
    四、解答题
    15. 已知圆锥的顶点为,母线PA,PB所成角的余弦值为,轴截面等腰三角形PAC的顶角为,若的面积为.
    (1)求该圆锥的侧面积;
    (2)求该圆锥的内接圆柱侧面积的最大值.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)根据同角的平方关系求出,由三角形面积公式求出圆锥母线长,进而求出底面半径,结合圆锥的侧面积公式计算即可求解;
    (2)设圆柱底面半径,则圆柱的高为,结合圆柱侧面积公式和基本不等式计算即可.
    【小问1详解】
    设圆锥母线长、底面半径分别为、,
    由圆锥的轴截面为等腰三角形且顶角为,则,解得,
    又,所以,
    又因为的面积为,
    ∴,解得(负值舍去),
    又,所以,
    ∴圆锥的侧面积.
    【小问2详解】
    作出轴截面如图所示:由(1)可知,
    设圆柱底面半径,即,
    则圆锥的高,
    所以,即圆柱的高为,
    所以圆锥内接圆柱的侧面积,
    当且仅当,即时取等号,
    所以圆锥内接圆柱侧面积的最大值为.
    16. 如图,在直三棱柱中,,D是BC边的中点,.
    (1)求直三棱柱的体积;
    (2)求证:面.
    (3)一只小虫从点沿直三棱柱表面爬到点D,求小虫爬行的最短距离.
    【答案】(1)144;
    (2)证明见解析; (3).
    【解析】
    【分析】(1)根据给定条件,求出,再利用柱体体积公式计算得解.
    (2)连接,借助三角形中位线,利用线面平行的判定推理即得.
    (3)分情况把点及点所在的几何体表面展开置于同一平面,求出两点间的距离并比较得解.
    【小问1详解】
    在直三棱柱中,由,得,
    由,得,,
    所以直三棱柱的体积.
    【小问2详解】
    连接,连接,由矩形,得是的中点,而D是BC边的中点,
    则,又平面,平面,
    所以平面.
    【小问3详解】
    当小虫从点沿爬到点D,把矩形与置于同一平面内,如图,
    连接,过作于,交于点,
    由,得,,,
    ,则,
    因此;
    当小虫从点沿正方形爬到点D,把正方形与置于同一平面内,
    或把正方形与矩形置于同一平面内,如图,
    在左图中,取中点,连,显然共线,则,,
    而,因此,
    在右图中,,;
    当小虫从点沿矩形爬到点D,把矩形与置于同一平面内,
    或把矩形与矩形置于同一平面内,如图,
    在左图中,取中点,连,显然共线,则,,
    而,因此,
    在右图中,,,
    显然,
    所以小虫爬行的最短距离.
    17. 已知的内角所对的边分别为,设向量,,且.
    (1)求角;
    (2)若,的面积为,求的周长.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)根据得到,再利用正弦定理和余弦定理求解即可;
    (2)先根据三角形的面积公式求出,再利用正弦定理求出即可.
    【小问1详解】
    因为,,且,
    所以,
    由正弦定理可得:,即,
    由余弦定理得:,所以,
    又,所以.
    【小问2详解】
    因为,
    由三角形面积公式得:,解得,
    所以为等腰三角形,所以,
    又,即,
    所以的周长为.
    18. 如图,在四棱锥中,底面是正方形,侧面QAD是正三角形,侧面底面,M是QD的中点.

    (1)求证:平面;
    (2)求侧面QBC与底面所成二面角的余弦值;
    (3)在棱QC上是否存在点N使平面平面AMC成立?如果存在,求出,如果不存在,说明理由.
    【答案】(1)证明见解析
    (2)
    (3)存在,
    【解析】
    【分析】(1)根据面面垂直的性质可得面,再根据线面垂直的性质可得,再根据线面垂直的判定定理即可得证;
    (2)取的中点,的中点,连接,证明平面,从而可得即为侧面QBC与底面所成二面角的平面角,进而可得答案;
    (3)连接交于点,连接,易得,当面,证明此时平面平面,再根据相似比即可求出.
    【小问1详解】
    因为侧面QAD是正三角形,M是QD的中点,
    所以,
    因为,面面,面面,面,
    所以面,
    又面,所以,
    又平面,
    所以平面;
    【小问2详解】
    取的中点,的中点,连接,
    则且,,
    故,
    因为面面,面面,面,
    所以面,
    因为面,所以,
    又平面,所以平面,
    又平面,所以,
    则即为侧面QBC与底面所成二面角的平面角,
    设,则,故,
    所以,
    即侧面QBC与底面所成二面角的余弦值为;
    【小问3详解】
    当面时,平面平面,证明如下:
    如图,连接交于点,连接,
    因为底面是正方形,所以,
    由(2)得面,
    因为面,所以,
    因为面时,,所以,
    又平面,
    所以平面,
    又平面,所以平面平面,
    因为,所以,
    因为,所以,
    所以在棱QC上是否存在点N,当时,平面平面AMC.
    【点睛】方法点睛:求二面角常用的方法:
    (1)几何法:二面角的大小常用它的平面角来度量,平面角的作法常见的有:
    ①定义法;②垂面法,注意利用等腰三角形的性质;
    (2)空间向量法:分别求出两个平面的法向量,然后通过两个平面法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求二面角是锐角还是钝角.
    19. 利用平面向量的坐标表示,可以把平面向量的概念推广为坐标为复数的“复向量”,即可将有序复数对(其中)视为一个向量,记作.类比平面向量可以定义其运算,两个复向量,的数量积定义为一个复数,记作,满足,复向量的模定义为.
    (1)设,,为虚数单位,求复向量、的模;
    (2)设、是两个复向量,
    ①已知对于任意两个平面向量,,(其中),成立,证明:对于复向量、,也成立;
    ②当时,称复向量与平行.若复向量与平行(其中为虚数单位,),求复数.
    【答案】(1),
    (2)①证明见解析;②
    【解析】
    【分析】(1)根据题目中复向量的模长公式计算即可;
    (2)①利用模长公式和复数的三角不等式,以及的坐标表示,即可证明结论成立;
    ②根据①中等号成立的条件,结合题意即可求出和的值.
    【小问1详解】
    因为,所以,
    可得的模为;
    因为,所以,
    所以的模为;
    【小问2详解】
    因为,所以,
    由复数的三角不等式,
    由,得,所以,
    所以,
    综上所知,
    ②考虑①中等号成立的条件知,对于复数的三角不等式,复向量各分量均不为零时,其等号成立的条件是存在非负实数,使得,
    若复向量与平行,则,
    根据中等号成立的条件,应有,
    则,
    结合,得,解得;
    所以,所以.

    相关试卷

    安徽省安庆市第一中学2023-2024学年高一下学期期中数学试卷(Word版附解析):

    这是一份安徽省安庆市第一中学2023-2024学年高一下学期期中数学试卷(Word版附解析),文件包含安徽省安庆市第一中学2023-2024学年高一下学期第一次阶段检测数学试题Word版含解析docx、安徽省安庆市第一中学2023-2024学年高一下学期第一次阶段检测数学试题Word版无答案docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。

    安徽省安庆市桐城中学2023-2024学年高一下学期开学考试数学试卷(Word版附解析):

    这是一份安徽省安庆市桐城中学2023-2024学年高一下学期开学考试数学试卷(Word版附解析),文件包含安徽省安庆市桐城中学2023-2024学年高一下学期开学检测数学试题Word版含解析docx、安徽省安庆市桐城中学2023-2024学年高一下学期开学检测数学试题Word版无答案docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。

    安徽省安庆市第一中学2023-2024学年高一上学期期末考试数学试卷(Word版附解析):

    这是一份安徽省安庆市第一中学2023-2024学年高一上学期期末考试数学试卷(Word版附解析),文件包含安徽省安庆市第一中学2023-2024学年高一上学期期末考试数学试卷原卷版docx、安徽省安庆市第一中学2023-2024学年高一上学期期末考试数学试卷Word版含解析docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map