人教版七年级数学下册精选压轴题汇编培优卷专题06两点间的距离(原卷版+解析)
展开一.选择题(共10小题,满分20分,每小题2分)
1.(2分)(2022春•右玉县期末)在坐标轴上与点M(3,﹣4)距离等于5的点共有( )
A.2个B.3个C.4个D.1个
2.(2分)(2021春•浏阳市期末)点A(﹣1,3)和点B(﹣1,﹣1),则A,B相距( )
A.4个单位长度B.12个单位长度
C.10个单位长度D.8个单位长度
3.(2分)(2020秋•永嘉县校级期末)已知点A(1,3),B(﹣2,3),则A,B两点间的距离是( )
A.4个单位长度B.3个单位长度
C.2个单位长度D.1个单位长度
4.(2分)(2020•乐亭县一模)在平面直角坐标系中,若点M(﹣2,3)与点N(﹣2,y)之间的距离是5,那么y的值是( )
A.﹣2B.8C.2或8D.﹣2或8
5.(2分)(2022春•巩义市期末)在平面直角坐标系中,有A(a+2,﹣2),B(4,a﹣3)两点,若AB∥x轴,则A,B两点间的距离为( )
A.1B.2C.3D.4
6.(2分)(2021秋•景德镇期末)P1(x1,y1),P2(x2,y2)是平面直角坐标系中的任意两点,我们把|x1﹣x2|+|y1﹣y2|叫做P1,P2两点间的“直角距离”,记作d(P1,P2).比如:点P(2,﹣4),Q(1,0),则d(P,Q)=|2﹣1|+|﹣4﹣0|=5,已知Q(2,1),动点P(x,y)满足d(P,Q)=3,且x、y均为整数,则满足条件的点P有( )个.
A.4B.8C.10D.12
7.(2分)(2022春•河西区期末)在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为( )
A.6,(﹣3,5)B.10,(3,﹣5)C.1,(3,4)D.3,(3,2)
8.(2分)(2021春•大同期末)点P(x,y)在第四象限,且点P到x轴和y轴的距离分别为3和5,则点P的坐标为( )
A.(3,﹣5)B.(﹣5,3)C.(5,﹣3)D.(﹣3,5)
9.(2分)(2019春•东湖区校级期末)P1(x1,y1),P2(x2,y2)是平面直角坐标系中的任意两点,我们把|x1﹣x2|+|y1﹣y2|叫做P1,P2两点间的“直角距离”,记作d(P1,P2).已知动点P(x,y),定点Q(2,1)满足d(P,Q)=2,且x、y均为整数,则满足条件的点P有( )个
A.4B.6C.8D.10
10.(2分)(2021春•安宁市校级期中)若点M(3,﹣2)与点N(x、y)在同一条平行于x轴的直线上,且MN=1,则N点的坐标为( )
A.(4,﹣2)B.(3,﹣1)
C.(3,﹣1)或(3,﹣3)D.(4,﹣2)或(2,﹣2)
二.填空题(共10小题,满分20分,每小题2分)
11.(2分)(2022春•广安期末)在平面直角坐标系中,已知点A(﹣1,4),若B是x轴上一动点,则A,B两点间的距离的最小值为 .
12.(2分)(2021春•汉阳区校级期中)如图,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,﹣4),A(5,0),则AD•BC的值为 .
13.(2分)(2021春•江门期末)已知平面直角坐标系内不同的两点A(3a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为 .
14.(2分)(2017春•邹平县校级月考)已知点A(2a,3),B(6﹣a,﹣2a),且直线AB平行于y轴,则A、B两点间的距离为 .
15.(2分)(2022春•夏邑县期中)已知在平面直角坐标系中有两点A(1,2)和B(4,2),则A、B两点间的距离为 .
16.(2分)(2021春•天河区期末)已知在平面直角坐标系中有动点A(3,y)(y是任意实数),则点B(﹣2,﹣3)与点A的距离的最小值为 .
17.(2分)(2021秋•任城区校级期末)点P(﹣2,﹣3)和点Q(3,﹣3)的距离为 .
18.(2分)(2020春•新城区校级期末)在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x的值是 .
19.(2分)(2019春•新余期末)对于平面直角坐标系xOy中的点P(a,b),若点P'的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P'为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P'(1+2×4,2×1+4),即P′(9,6).若点P在x轴的正半轴上,点P的“k属派生点”为点P′,且线段PP′的长度为线段OP长度的5倍,则k的值为 .
20.(2分)(2021春•静安区校级期末)在直角坐标平面内,点A(﹣m,5)和点B(﹣m,﹣3)之间的距离为 .
三.解答题(共7小题,满分60分)
21.(8分)(2022秋•南城县期中)在平面直角坐标系中,有A(﹣2,a+2),B(a﹣3,4)C(b﹣4,b)三点.
(1)当AB∥x轴时,求A、B两点间的距离;
(2)当CD⊥x轴于点D,且CD=3时,求点C的坐标.
22.(8分)(2021春•临潼区期末)在平面直角坐标系中,有A(﹣2,a+1),B(a﹣1,4),C(b﹣2,b)三点.
(1)当点C在y轴上时,求点C的坐标;
(2)当AB∥x轴时,求A,B两点间的距离;
(3)当CD⊥x轴于点D,且CD=1时,求点C的坐标.
23.(8分)(2019春•丰台区期末)在平面直角坐标系xOy中,对于任意两点A,B,我们把A,B两点横坐标差的绝对值与它们纵坐标差的绝对值的和叫做A,B两点间的折线距离,记作d(A,B).
即:如果A(x1,y1),B(x2,y2).那么d(A,B)=|x1﹣x2|+|y1﹣y2|.
(1)已知A(2,1),B(﹣3,0),求出d(A,B)的值;
(2)已知C(2,0),D(0,a),且d(C,D)≤3,求a的取值范围;
(3)已知M(0,2),N(0,﹣3),动点P(x,y),若P,M两点间的折线距离与P,N两点间的折线距离的差的绝对值是3,直接写出y的值并画出所有符合条件的点P组成的图形.
24.(8分)(2021春•延津县期中)在平面直角坐标系中,有A(﹣2,a+2),B(a﹣1,4),C(b﹣3,b+1)三点.
(1)当点C在y轴上时,求点C的坐标.
(2)当AB∥x轴时,求A,B两点间的距离.
(3)当CD⊥x轴于点D,且CD=2时,求点C的坐标.
25.(10分)(2021•张家界模拟)问题情境:
在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;
【应用】:
(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为 .
(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为 .
【拓展】:
我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.
解决下列问题:
(1)如图2,已知E(2,0),若F(﹣1,﹣2),则d(E,F) ;
(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t= .
(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q)= .
26.(9分)(2016春•长兴县月考)已知,如图,点A(a,b),B(c,d)在平面直角坐标系中的任意两点,且AC⊥x轴于点C,BD⊥x轴于点D.
(1)CD= ,|DB﹣AC|= ;(用含a,b,c,d的代数式表示)
(2)请猜想:A,B两点之间的距离 ;
(3)利用猜想,若A(﹣2,5),B(4,﹣4),求AB两点之间的距离.
27.(9分)(2016秋•萧山区校级月考)在平面直角坐标系中,
(1)已知点P(a﹣1,3a+6)在y轴上,求点P的坐标;
(2)已知两点A(﹣3,m),B(n,4),若AB∥x轴,点B在第一象限,求m的值,并确定n的取值范围;
(3)在(1)(2)的条件下,如果线段AB的长度是5,求以P、A、B为顶点的三角形的面积S.
题号
一
二
三
总分
得分
评卷人
得 分
评卷人
得 分
评卷人
得 分
2022-2023学年人教版七年级数学下册精选压轴题培优卷
专题06 两点间的距离
一.选择题(共10小题,满分20分,每小题2分)
1.(2分)(2022春•右玉县期末)在坐标轴上与点M(3,﹣4)距离等于5的点共有( )
A.2个B.3个C.4个D.1个
解:在坐标轴上与点M(3,﹣4)距离等于5的点在以M为圆心,5为半径画圆上,而圆与坐标轴的交点为(0,0),(0,﹣8),(6,0),共3个,故选:B.
2.(2分)(2021春•浏阳市期末)点A(﹣1,3)和点B(﹣1,﹣1),则A,B相距( )
A.4个单位长度B.12个单位长度
C.10个单位长度D.8个单位长度
解:∵点A(﹣1,3)和点B(﹣1,﹣1)的横坐标都是﹣1,
∴A,B相距|﹣1﹣3|=4个单位长度.
故选:A.
3.(2分)(2020秋•永嘉县校级期末)已知点A(1,3),B(﹣2,3),则A,B两点间的距离是( )
A.4个单位长度B.3个单位长度
C.2个单位长度D.1个单位长度
解:由点A(1,3),B(﹣2,3)知,AB=|1﹣(﹣2)|=3,即A,B两点间的距离是3个单位长度.
故选:B.
4.(2分)(2020•乐亭县一模)在平面直角坐标系中,若点M(﹣2,3)与点N(﹣2,y)之间的距离是5,那么y的值是( )
A.﹣2B.8C.2或8D.﹣2或8
解:∵点M(﹣2,3)与点N(﹣2,y)之间的距离是5,
∴|y﹣3|=5,
解得:y=8或y=﹣2.
故选:D.
5.(2分)(2022春•巩义市期末)在平面直角坐标系中,有A(a+2,﹣2),B(4,a﹣3)两点,若AB∥x轴,则A,B两点间的距离为( )
A.1B.2C.3D.4
解:∵AB∥x轴,
∴A点和B点的纵坐标相等,
即a﹣3=﹣2,解得a=1,
∴A(3,﹣2),B(4,﹣2),
∴A、B两点间的距离为4﹣3=1.
故选:A.
6.(2分)(2021秋•景德镇期末)P1(x1,y1),P2(x2,y2)是平面直角坐标系中的任意两点,我们把|x1﹣x2|+|y1﹣y2|叫做P1,P2两点间的“直角距离”,记作d(P1,P2).比如:点P(2,﹣4),Q(1,0),则d(P,Q)=|2﹣1|+|﹣4﹣0|=5,已知Q(2,1),动点P(x,y)满足d(P,Q)=3,且x、y均为整数,则满足条件的点P有( )个.
A.4B.8C.10D.12
解:依题意有
|x﹣2|+|y﹣1|=3,
①x﹣2=±3,y﹣1=0,
解得,;
②x﹣2=±2,y﹣1=±1,
解得,,,;
③x﹣2=±1,y﹣1=±2,
解得,,,;
④x﹣2=0,y﹣1=±3,
解得,.
故满足条件的点P有12个.
故选:D.
7.(2分)(2022春•河西区期末)在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为( )
A.6,(﹣3,5)B.10,(3,﹣5)C.1,(3,4)D.3,(3,2)
解:依题意可得:
∵AC∥x轴,A(﹣3,2)
∴y=2,
根据垂线段最短,当BC⊥AC于点C时,
点B到AC的距离最短,即
BC的最小值=5﹣2=3,
此时点C的坐标为(3,2),
故选:D.
8.(2分)(2021春•大同期末)点P(x,y)在第四象限,且点P到x轴和y轴的距离分别为3和5,则点P的坐标为( )
A.(3,﹣5)B.(﹣5,3)C.(5,﹣3)D.(﹣3,5)
解:点P(x,y)点在第四象限,且点P到x轴、y轴的距离分别为3、5,
则点P的坐标为(5,﹣3),
故选:C.
9.(2分)(2019春•东湖区校级期末)P1(x1,y1),P2(x2,y2)是平面直角坐标系中的任意两点,我们把|x1﹣x2|+|y1﹣y2|叫做P1,P2两点间的“直角距离”,记作d(P1,P2).已知动点P(x,y),定点Q(2,1)满足d(P,Q)=2,且x、y均为整数,则满足条件的点P有( )个
A.4B.6C.8D.10
解:依题意有,
|x﹣2|+|y﹣1|=2,
①x﹣2=±2,y﹣1=0,
解得,;
②x﹣2=±1,y﹣1=±1,
解得,,,;
③x﹣2=0,y﹣1=±2,
解得,.
故满足条件的点P有8个.
故选:C.
10.(2分)(2021春•安宁市校级期中)若点M(3,﹣2)与点N(x、y)在同一条平行于x轴的直线上,且MN=1,则N点的坐标为( )
A.(4,﹣2)B.(3,﹣1)
C.(3,﹣1)或(3,﹣3)D.(4,﹣2)或(2,﹣2)
解:∵点M(3,﹣2)与点N(x、y)在同一条平行于x轴的直线上,MN=1,
∴y=﹣2,|x﹣3|=1,
∴x=2或4,
∴N点的坐标为(2,﹣2)或(4,﹣2).
故选:D.
二.填空题(共10小题,满分20分,每小题2分)
11.(2分)(2022春•广安期末)在平面直角坐标系中,已知点A(﹣1,4),若B是x轴上一动点,则A,B两点间的距离的最小值为 4 .
解:由题意可知,当AB⊥x轴于点B时,A,B两点间的距离最小,
又点A(﹣1,4),
∴此时B(﹣1,0),
∴A,B两点间的距离的最小值为4.
12.(2分)(2021春•汉阳区校级期中)如图,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,﹣4),A(5,0),则AD•BC的值为 35 .
解:过B作BE⊥x轴于E,过C作CF⊥x轴于F,
∵B(m,3),C(n,﹣4),A(5,0),
∴BE=3,CF=4,OA=5,
∵S△ABC=S△AOB+S△AOC=OA•BE+OA•CF=,
S△ABC=AD•BC,
∴AD•BC=,
则AD•BC=35.
故答案为:35.
13.(2分)(2021春•江门期末)已知平面直角坐标系内不同的两点A(3a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为 1或﹣3 .
解:∵平面直角坐标系内的两点A(3a+2,4)和B(3,2a+2)到x轴的距离相等,
∴|2a+2|=4,
解得:a1=1,a2=﹣3.
当a=1时,点A为(5,4),点B为(3,4),符合题意;
当a=﹣3时,点A为(﹣7,4),点B(3,﹣4),符合题意.
故答案为:1或﹣3.
14.(2分)(2017春•邹平县校级月考)已知点A(2a,3),B(6﹣a,﹣2a),且直线AB平行于y轴,则A、B两点间的距离为 7 .
解:∵直线AB平行于y轴,点A(2a,3),点B(6﹣a,﹣2a),
∴2a=6﹣a,解得:a=2,
∴点A(4,3),点B(4,﹣4),
∴线段AB=3﹣(﹣4)=7.
故答案为:7.
15.(2分)(2022春•夏邑县期中)已知在平面直角坐标系中有两点A(1,2)和B(4,2),则A、B两点间的距离为 3 .
解:在平面直角坐标系中有两点A(1,2),B(4,2),
∴A、B两点间的距离为=3.
故答案为:3.
16.(2分)(2021春•天河区期末)已知在平面直角坐标系中有动点A(3,y)(y是任意实数),则点B(﹣2,﹣3)与点A的距离的最小值为 5 .
解:∵点A(3,y)(y是任意实数),
∴点A在直线x=3上,
∴当AB∥x轴时,A、B两点的距离最小,
∵点B(﹣2,﹣3),
∴B(﹣2,﹣3)与点A的距离的最小值为3﹣(﹣2)=5.
故答案为:5.
17.(2分)(2021秋•任城区校级期末)点P(﹣2,﹣3)和点Q(3,﹣3)的距离为 5 .
解:点P和点Q的间的距离==5.
故答案为5.
18.(2分)(2020春•新城区校级期末)在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x的值是 ﹣1或5 .
解:∵点M(2,4)与点N(x,4)之间的距离是3,
∴|2﹣x|=3,
解得,x=﹣1或x=5,
故答案为:﹣1或5.
19.(2分)(2019春•新余期末)对于平面直角坐标系xOy中的点P(a,b),若点P'的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P'为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P'(1+2×4,2×1+4),即P′(9,6).若点P在x轴的正半轴上,点P的“k属派生点”为点P′,且线段PP′的长度为线段OP长度的5倍,则k的值为 ±5 .
解:设P(m,0)(m>0),由题意:P′(m,mk),
∵PP′=5OP,
∴|mk|=5m,
∵m>0,
∴|k|=5,
∴k=±5.
故答案为:±5.
20.(2分)(2021春•静安区校级期末)在直角坐标平面内,点A(﹣m,5)和点B(﹣m,﹣3)之间的距离为 8 .
解:∵在直角坐标平面内,点A(﹣m,5),点B(﹣m,﹣3)
∴AB==8,
故答案为:8
三.解答题(共7小题,满分60分)
21.(8分)(2022秋•南城县期中)在平面直角坐标系中,有A(﹣2,a+2),B(a﹣3,4)C(b﹣4,b)三点.
(1)当AB∥x轴时,求A、B两点间的距离;
(2)当CD⊥x轴于点D,且CD=3时,求点C的坐标.
解:(1)∵AB∥x轴,
∴A点和B的纵坐标相等,
即a+2=4,解得a=2,
∴A(﹣2,4),B(﹣1,4),
∴A、B两点间的距离为﹣1﹣(﹣2)=1;
(2)∵当CD⊥x轴于点D,CD=3,
∴|b|=3,解得b=3或b=﹣3,
∴当b=3时,b﹣4=﹣1;当b=﹣3时,b﹣4=﹣7,
∴C点坐标为(﹣1,3)或(﹣7,﹣3).
22.(8分)(2021春•临潼区期末)在平面直角坐标系中,有A(﹣2,a+1),B(a﹣1,4),C(b﹣2,b)三点.
(1)当点C在y轴上时,求点C的坐标;
(2)当AB∥x轴时,求A,B两点间的距离;
(3)当CD⊥x轴于点D,且CD=1时,求点C的坐标.
解:(1)∵点C在y轴上,
∴b﹣2=0,解得b=2,
∴C点坐标为(0,2);
(2)∵AB∥x轴,
∴A、B点的纵坐标相同,
∴a+1=4,解得a=3,
∴A(﹣2,4),B(2,4),
∴A,B两点间的距离=2﹣(﹣2)=4;
(3)∵CD⊥x轴,CD=1,
∴|b|=1,解得b=±1,
∴C点坐标为(﹣1,1)或(﹣3,﹣1).
23.(8分)(2019春•丰台区期末)在平面直角坐标系xOy中,对于任意两点A,B,我们把A,B两点横坐标差的绝对值与它们纵坐标差的绝对值的和叫做A,B两点间的折线距离,记作d(A,B).
即:如果A(x1,y1),B(x2,y2).那么d(A,B)=|x1﹣x2|+|y1﹣y2|.
(1)已知A(2,1),B(﹣3,0),求出d(A,B)的值;
(2)已知C(2,0),D(0,a),且d(C,D)≤3,求a的取值范围;
(3)已知M(0,2),N(0,﹣3),动点P(x,y),若P,M两点间的折线距离与P,N两点间的折线距离的差的绝对值是3,直接写出y的值并画出所有符合条件的点P组成的图形.
解:(1)由题意可知:d(A,B)=|2﹣(﹣3)|+|1﹣0|=5+1=6;
(2)∵d(A,C)=2+|a|≤3,
∴|a|≤1,
∴﹣1≤a≤1;
(3)d(P,M)=|x|+|y﹣2|,d(P,N)=|x|+|y+3|,
由题意可知:||y﹣2|﹣|y+3||=3,
当y<﹣3时,
等式的左边=5,此时不满足题意;
当﹣3<y<2时,
等式的左边=|2y+1|,
即|2y+1|=3,
解得:y=1或y=﹣2,
当y>2时,
等式的左边=5,不符合题意,
综上所述,点P(x,1)或(x,﹣2),
如图所示.
24.(8分)(2021春•延津县期中)在平面直角坐标系中,有A(﹣2,a+2),B(a﹣1,4),C(b﹣3,b+1)三点.
(1)当点C在y轴上时,求点C的坐标.
(2)当AB∥x轴时,求A,B两点间的距离.
(3)当CD⊥x轴于点D,且CD=2时,求点C的坐标.
解:(1)∵点C在y轴上,
∴b﹣3=0,解得b=3,
b+1=4,
∴C点坐标为(0,4);
(2)∵AB∥x轴,
∴A、B点的纵坐标相同,
∴a+2=4,
解得a=2,
∴A(﹣2,4),B(1,4),
∴A,B两点间的距离=1﹣(﹣2)=3;
(3)∵CD⊥x轴,CD=2,
∴|b+1|=2,
解得b=﹣3或b=1.
∴C点坐标为(﹣6,﹣2)或(﹣2,2).
25.(10分)(2021•张家界模拟)问题情境:
在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;
【应用】:
(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为 3 .
(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为 (1,2)或(1,﹣2) .
【拓展】:
我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.
解决下列问题:
(1)如图2,已知E(2,0),若F(﹣1,﹣2),则d(E,F) =5 ;
(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t= 2或﹣2 .
(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d(P,Q)= 4或8 .
解:【应用】:
(1)AB的长度为|﹣1﹣2|=3.
故答案为:3.
(2)由CD∥y轴,可设点D的坐标为(1,m),
∵CD=2,
∴|0﹣m|=2,解得:m=±2,
∴点D的坐标为(1,2)或(1,﹣2).
故答案为:(1,2)或(1,﹣2).
【拓展】:
(1)d(E,F)=|2﹣(﹣1)|+|0﹣(﹣2)|=5.
故答案为:=5.
(2)∵E(2,0),H(1,t),d(E,H)=3,
∴|2﹣1|+|0﹣t|=3,解得:t=±2.
故答案为:2或﹣2.
(3)由点Q在x轴上,可设点Q的坐标为(x,0),
∵三角形OPQ的面积为3,
∴|x|×3=3,解得:x=±2.
当点Q的坐标为(2,0)时,d(P,Q)=|3﹣2|+|3﹣0|=4;
当点Q的坐标为(﹣2,0)时,d(P,Q)=|3﹣(﹣2)|+|3﹣0|=8.
故答案为:4或8.
26.(9分)(2016春•长兴县月考)已知,如图,点A(a,b),B(c,d)在平面直角坐标系中的任意两点,且AC⊥x轴于点C,BD⊥x轴于点D.
(1)CD= |c﹣a| ,|DB﹣AC|= |b﹣d| ;(用含a,b,c,d的代数式表示)
(2)请猜想:A,B两点之间的距离 ;
(3)利用猜想,若A(﹣2,5),B(4,﹣4),求AB两点之间的距离.
解:(1)CD=|c﹣a|,|DB﹣AC|=|b﹣d|;
(2)AB=;
(3)AB==3.
故答案为|c﹣a|,|b﹣d|;.
27.(9分)(2016秋•萧山区校级月考)在平面直角坐标系中,
(1)已知点P(a﹣1,3a+6)在y轴上,求点P的坐标;
(2)已知两点A(﹣3,m),B(n,4),若AB∥x轴,点B在第一象限,求m的值,并确定n的取值范围;
(3)在(1)(2)的条件下,如果线段AB的长度是5,求以P、A、B为顶点的三角形的面积S.
解:(1)∵点P(a﹣1,3a+6)在y轴上,
∴a﹣1=0,
解得a=1,
所以,3a+6=3×1+6=9,
故P(0,9);
(2)∵AB∥x轴,
∴m=4,
∵点B在第一象限,
∴n>0,
∴m=4,n>0;
(3)∵AB=5,A、B的纵坐标都为4,
∴点P到AB的距离为9﹣4=5,
∴以P、A、B为顶点的三角形的面积S=×5×5=12.5
人教版七年级数学下册精选压轴题汇编培优卷专题17不等式(组)的应用(原卷版+解析): 这是一份人教版七年级数学下册精选压轴题汇编培优卷专题17不等式(组)的应用(原卷版+解析),共27页。试卷主要包含了道题?,>11x等内容,欢迎下载使用。
人教版七年级数学下册精选压轴题汇编培优卷专题16一元一次不等式(组)(原卷版+解析): 这是一份人教版七年级数学下册精选压轴题汇编培优卷专题16一元一次不等式(组)(原卷版+解析),共22页。
人教版七年级数学下册精选压轴题汇编培优卷专题05坐标与图形性质(原卷版+解析): 这是一份人教版七年级数学下册精选压轴题汇编培优卷专题05坐标与图形性质(原卷版+解析),共27页。试卷主要包含了象限等内容,欢迎下载使用。