|试卷下载
终身会员
搜索
    上传资料 赚现金
    2025届高考数学一轮复习三年真题汇编专题18-2解析几何轨迹方程问题
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      2025届高考一轮复习三年真题汇编专题18解析几何轨迹方程问题参考答案.doc
    • 练习
      2025届高考一轮复习三年真题汇编专题18解析几何轨迹方程问题.docx
    2025届高考数学一轮复习三年真题汇编专题18-2解析几何轨迹方程问题01
    2025届高考数学一轮复习三年真题汇编专题18-2解析几何轨迹方程问题02
    2025届高考数学一轮复习三年真题汇编专题18-2解析几何轨迹方程问题03
    2025届高考数学一轮复习三年真题汇编专题18-2解析几何轨迹方程问题01
    2025届高考数学一轮复习三年真题汇编专题18-2解析几何轨迹方程问题02
    2025届高考数学一轮复习三年真题汇编专题18-2解析几何轨迹方程问题03
    还剩34页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届高考数学一轮复习三年真题汇编专题18-2解析几何轨迹方程问题

    展开
    这是一份2025届高考数学一轮复习三年真题汇编专题18-2解析几何轨迹方程问题,文件包含2025届高考一轮复习三年真题汇编专题18解析几何轨迹方程问题参考答案doc、2025届高考一轮复习三年真题汇编专题18解析几何轨迹方程问题docx等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。

    【分析】设点,由题意,根据中点的坐标表示可得,代入圆的方程即可求解.
    【详解】设点,则,
    因为为的中点,所以,即,
    又在圆上,
    所以,即,
    即点的轨迹方程为.
    故选:A
    2.C
    【分析】可利用三边斜率问题与正弦定理,转化出三边比例,设,由面积公式求出,由勾股定理得出,结合第一定义再求出.
    【详解】如下图:由题可知,点必落在第四象限,,设,
    ,由,求得,
    因为,所以,求得,即,
    ,由正弦定理可得:,
    则由得,
    由得,
    则,
    由双曲线第一定义可得:,,
    所以双曲线的方程为.
    故选:C
    3.D
    【分析】先由点到直线的距离公式求出,设,由得到,.再由三角形的面积公式得到,从而得到,则可得到,解出,代入双曲线的方程即可得到答案.
    【详解】如图,

    因为,不妨设渐近线方程为,即,
    所以,
    所以.
    设,则,所以,所以.
    因为,所以,所以,所以,
    所以,
    因为,
    所以,
    所以,解得,
    所以双曲线的方程为
    故选:D
    4.B
    【分析】根据离心率及,解得关于的等量关系式,即可得解.
    【详解】解:因为离心率,解得,,
    分别为C的左右顶点,则,
    B为上顶点,所以.
    所以,因为
    所以,将代入,解得,
    故椭圆的方程为.
    故选:B.
    5.C
    【分析】由已知可得出的值,求出点的坐标,分析可得,由此可得出关于、、的方程组,解出这三个量的值,即可得出双曲线的标准方程.
    【详解】抛物线的准线方程为,则,则、,
    不妨设点为第二象限内的点,联立,可得,即点,
    因为且,则为等腰直角三角形,
    且,即,可得,
    所以,,解得,因此,双曲线的标准方程为.
    故选:C.
    6.ABD
    【分析】根据题设将原点代入曲线方程后可求,故可判断A的正误,结合曲线方程可判断B的正误,利用特例法可判断C的正误,将曲线方程化简后结合不等式的性质可判断D的正误.
    【详解】对于A:设曲线上的动点,则且,
    因为曲线过坐标原点,故,解得,故A正确.
    对于B:又曲线方程为,而,
    故.
    当时,,
    故在曲线上,故B正确.
    对于C:由曲线的方程可得,取,
    则,而,故此时,
    故在第一象限内点的纵坐标的最大值大于1,故C错误.
    对于D:当点在曲线上时,由C的分析可得,
    故,故D正确.
    故选:ABD.
    【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.
    7.
    【分析】根据给定条件,求出双曲线的实半轴、虚半轴长,再写出的方程作答.
    【详解】令双曲线的实半轴、虚半轴长分别为,显然双曲线的中心为原点,焦点在x轴上,其半焦距,
    由双曲线的离心率为,得,解得,则,
    所以双曲线的方程为.
    故答案为:
    8.
    【分析】设出点M的坐标,利用和均在上,求得圆心及半径,即可得圆的方程.
    【详解】[方法一]:三点共圆
    ∵点M在直线上,
    ∴设点M为,又因为点和均在上,
    ∴点M到两点的距离相等且为半径R,
    ∴,
    ,解得,
    ∴,,
    的方程为.
    故答案为:
    [方法二]:圆的几何性质
    由题可知,M是以(3,0)和(0,1)为端点的线段垂直平分线 y=3x-4与直线的交点(1,-1)., 的方程为.
    故答案为:
    9.或或或.
    【分析】方法一:设圆的方程为,根据所选点的坐标,得到方程组,解得即可;
    【详解】[方法一]:圆的一般方程
    依题意设圆的方程为,
    (1)若过,,,则,解得,
    所以圆的方程为,即;
    (2)若过,,,则,解得,
    所以圆的方程为,即;
    (3)若过,,,则,解得,
    所以圆的方程为,即;
    (4)若过,,,则,解得,所以圆的方程为,即;
    故答案为:或 或 或.
    [方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心)

    (1)若圆过三点,圆心在直线,设圆心坐标为,
    则,所以圆的方程为;
    (2)若圆过三点, 设圆心坐标为,则,所以圆的方程为;
    (3)若圆过 三点,则线段的中垂线方程为,线段 的中垂线方程 为,联立得 ,所以圆的方程为;
    (4)若圆过三点,则线段的中垂线方程为, 线段中垂线方程为 ,联立得,所以圆的方程为.
    故答案为:或 或 或.
    【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;
    方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.
    10.或或
    【分析】先判断两圆位置关系,分情况讨论即可.
    【详解】[方法一]:
    显然直线的斜率不为0,不妨设直线方程为,
    于是,
    故①,于是或,
    再结合①解得或或,
    所以直线方程有三条,分别为,,
    填一条即可
    [方法二]:
    设圆的圆心,半径为,
    圆的圆心,半径,
    则,因此两圆外切,
    由图像可知,共有三条直线符合条件,显然符合题意;
    又由方程和相减可得方程,
    即为过两圆公共切点的切线方程,
    又易知两圆圆心所在直线OC的方程为,
    直线OC与直线的交点为,
    设过该点的直线为,则,解得,
    从而该切线的方程为填一条即可
    [方法三]:
    圆的圆心为,半径为,
    圆的圆心为,半径为,
    两圆圆心距为,等于两圆半径之和,故两圆外切,
    如图,
    当切线为l时,因为,所以,设方程为
    O到l的距离,解得,所以l的方程为,
    当切线为m时,设直线方程为,其中,,
    由题意,解得,
    当切线为n时,易知切线方程为,
    故答案为:或或.
    11.
    【分析】令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解;
    【详解】[方法一]:弦中点问题:点差法
    令的中点为,设,,利用点差法得到,
    设直线,,,求出、的坐标,
    再根据求出、,即可得解;
    解:令的中点为,因为,所以,
    设,,则,,
    所以,即
    所以,即,设直线,,,
    令得,令得,即,,
    所以,
    即,解得或(舍去),
    又,即,解得或(舍去),
    所以直线,即;
    故答案为:
    [方法二]:直线与圆锥曲线相交的常规方法
    解:由题意知,点既为线段的中点又是线段MN的中点,
    设,,设直线,,,
    则,,,因为,所以
    联立直线AB与椭圆方程得消掉y得
    其中,
    ∴AB中点E的横坐标,又,∴
    ∵,,∴,又,解得m=2
    所以直线,即
    12.(1)
    (2)直线的方程为或.
    【分析】(1)代入两点得到关于的方程,解出即可;
    (2)方法一:以为底,求出三角形的高,即点到直线的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到点坐标,则得到直线的方程;方法二:同法一得到点到直线的距离,再设,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点到直线的距离,利用椭圆的参数方程即可求解;法四:首先验证直线斜率不存在的情况,再设直线,联立椭圆方程,得到点坐标,再利用点到直线距离公式即可;法五:首先考虑直线斜率不存在的情况,再设,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘表达面积即可.
    【详解】(1)由题意得,解得,
    所以.
    (2)法一:,则直线的方程为,即,
    ,由(1)知,
    设点到直线的距离为,则,
    则将直线沿着与垂直的方向平移单位即可,
    此时该平行线与椭圆的交点即为点,
    设该平行线的方程为:,
    则,解得或,
    当时,联立,解得或,
    即或,
    当时,此时,直线的方程为,即,
    当时,此时,直线的方程为,即,
    当时,联立得,
    ,此时该直线与椭圆无交点.
    综上直线的方程为或.
    法二:同法一得到直线的方程为,
    点到直线的距离,
    设,则,解得或,
    即或,以下同法一.
    法三:同法一得到直线的方程为,
    点到直线的距离,
    设,其中,则有,
    联立,解得或,
    即或,以下同法一;
    法四:当直线的斜率不存在时,此时,
    ,符合题意,此时,直线的方程为,即,
    当线的斜率存在时,设直线的方程为,
    联立椭圆方程有,则,其中,即,
    解得或,,,
    令,则,则
    同法一得到直线的方程为,
    点到直线的距离,
    则,解得,
    此时,则得到此时,直线的方程为,即,
    综上直线的方程为或.
    法五:当的斜率不存在时,到距离,
    此时不满足条件.
    当的斜率存在时,设,令,
    ,消可得,
    ,且,即,

    到直线距离,
    或,均满足题意,或,即或.
    法六:当的斜率不存在时,到距离,
    此时不满足条件.
    当直线斜率存在时,设,
    设与轴的交点为,令,则,
    联立,则有,

    其中,且,
    则,
    则,解的或,经代入判别式验证均满足题意.
    则直线为或,即或.
    13.(1)
    (2)存在,使得恒成立.
    【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.
    (2)设该直线方程为:,, 联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用表示,再根据可求的范围.
    【详解】(1)因为椭圆的离心率为,故,,其中为半焦距,
    所以,故,
    故,所以,,故椭圆方程为:.
    (2)
    若过点的动直线的斜率存在,则可设该直线方程为:,
    设,
    由可得,
    故且
    而,


    因为恒成立,故,解得.
    若过点的动直线的斜率不存在,则或,
    此时需,两者结合可得.
    综上,存在,使得恒成立.
    【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.
    14.(1)
    (2)证明见解析
    【分析】(1)结合题意得到,,再结合,解之即可;
    (2)依题意求得直线、与的方程,从而求得点的坐标,进而求得,再根据题意求得,得到,由此得解.
    【详解】(1)依题意,得,则,
    又分别为椭圆上下顶点,,所以,即,
    所以,即,则,
    所以椭圆的方程为.
    (2)因为椭圆的方程为,所以,
    因为为第一象限上的动点,设,则,

    易得,则直线的方程为,
    ,则直线的方程为,
    联立,解得,即,
    而,则直线的方程为,
    令,则,解得,即,
    又,则,,
    所以

    又,即,
    显然,与不重合,所以.
    15.(1)
    (2)
    【分析】(1)由题意得,进一步得,由此即可得解;
    (2)设,,联立椭圆方程,由韦达定理有,而,令,即可得解.
    【详解】(1)由题意,从而,
    所以椭圆方程为,离心率为;
    (2)直线斜率不为0,否则直线与椭圆无交点,矛盾,
    从而设,,
    联立,化简并整理得,
    由题意,即应满足,
    所以,
    若直线斜率为0,由椭圆的对称性可设,
    所以,在直线方程中令,
    得,
    所以,
    此时应满足,即应满足或,
    综上所述,满足题意,此时或.
    16.(1)
    (2)证明见解析
    【分析】(1)设,根据的坐标及轴可求基本量,故可求椭圆方程.
    (2)设,,,联立直线方程和椭圆方程,用的坐标表示,结合韦达定理化简前者可得,故可证轴.
    【详解】(1)设,由题设有且,故,故,故,
    故椭圆方程为.
    (2)直线的斜率必定存在,设,,,
    由可得,
    故,故,
    又,
    而,故直线,故,
    所以

    故,即轴.
    【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:
    (1)设直线方程,设交点坐标为;
    (2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,注意的判断;
    (3)列出韦达定理;
    (4)将所求问题或题中的关系转化为、(或、)的形式;
    (5)代入韦达定理求解.
    17.(1)
    (2)
    【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意的取值范围;
    (2)根据曲线的方程,结合图形通过平移直线分析相应的临界位置,结合点到直线的距离公式运算求解即可.
    【详解】(1)因为,即,可得,
    整理得,表示以为圆心,半径为1的圆,
    又因为,
    且,则,则,
    故.
    (2)因为(为参数,),
    整理得,表示圆心为,半径为2,且位于第二象限的圆弧,
    如图所示,若直线过,则,解得;
    若直线,即与相切,则,解得,
    若直线与均没有公共点,则或,
    即实数的取值范围.
    【点睛】
    18.(1)
    (2)见解析
    【分析】(1)设,根据题意列出方程,化简即可;
    (2)法一:设矩形的三个顶点,且,分别令,,且,利用放缩法得,设函数,利用导数求出其最小值,则得的最小值,再排除边界值即可.
    法二:设直线的方程为,将其与抛物线方程联立,再利用弦长公式和放缩法得,利用换元法和求导即可求出周长最值,再排除边界值即可.
    法三:利用平移坐标系法,再设点,利用三角换元再对角度分类讨论,结合基本不等式即可证明.
    【详解】(1)设,则,两边同平方化简得,
    故.
    (2)法一:设矩形的三个顶点在上,且,易知矩形四条边所在直线的斜率均存在,且不为0,

    则,令,
    同理令,且,则,
    设矩形周长为,由对称性不妨设,,
    则,易知
    则令,
    令,解得,
    当时,,此时单调递减,
    当,,此时单调递增,
    则,
    故,即.
    当时,,且,即时等号成立,矛盾,故,
    得证.
    法二:不妨设在上,且,

    依题意可设,易知直线,的斜率均存在且不为0,
    则设,的斜率分别为和,由对称性,不妨设,
    直线的方程为,
    则联立得,
    ,则
    则,
    同理,
    令,则,设,
    则,令,解得,
    当时,,此时单调递减,
    当,,此时单调递增,
    则,

    但,此处取等条件为,与最终取等时不一致,故.
    法三:为了计算方便,我们将抛物线向下移动个单位得抛物线,
    矩形变换为矩形,则问题等价于矩形的周长大于.
    设 , 根据对称性不妨设 .
    则 , 由于 , 则 .
    由于 , 且 介于 之间,
    则 . 令 ,
    ,则,从而

    ①当时,
    ②当 时,由于,从而,
    从而又,
    故,由此

    当且仅当时等号成立,故,故矩形周长大于.
    .
    【点睛】关键点睛:本题的第二个的关键是通过放缩得,同时为了简便运算,对右边的式子平方后再设新函数求导,最后再排除边界值即可.
    19.(1)椭圆的方程为,离心率为.
    (2).
    【分析】(1)由解得,从而求出,代入椭圆方程即可求方程,再代入离心率公式即求离心率.
    (2)先设直线的方程,与椭圆方程联立,消去,再由韦达定理可得,从而得到点和点坐标.由得,即可得到关于的方程,解出,代入直线的方程即可得到答案.
    【详解】(1)如图,

    由题意得,解得,所以,
    所以椭圆的方程为,离心率为.
    (2)由题意得,直线斜率存在,由椭圆的方程为可得,
    设直线的方程为,
    联立方程组,消去整理得:,
    由韦达定理得,所以,
    所以,.
    所以,,,
    所以,
    所以,即,
    解得,所以直线的方程为.
    20.(1)
    (2)证明见解析.
    【分析】(1)由题意求得的值即可确定双曲线方程;
    (2)设出直线方程,与双曲线方程联立,然后由点的坐标分别写出直线与的方程,联立直线方程,消去,结合韦达定理计算可得,即交点的横坐标为定值,据此可证得点在定直线上.
    【详解】(1)设双曲线方程为,由焦点坐标可知,
    则由可得,,
    双曲线方程为.
    (2)由(1)可得,设,
    显然直线的斜率不为0,所以设直线的方程为,且,
    与联立可得,且,
    则,

    直线的方程为,直线的方程为,
    联立直线与直线的方程可得:

    由可得,即,
    据此可得点在定直线上运动.
    【点睛】关键点点睛:求双曲线方程的定直线问题,意在考查学生的计算能力,转化能力和综合应用能力,其中根据设而不求的思想,利用韦达定理得到根与系数的关系可以简化运算,是解题的关键.
    21.(1)
    (2)证明见详解
    【分析】(1)根据题意列式求解,进而可得结果;
    (2)设直线的方程,进而可求点的坐标,结合韦达定理验证为定值即可.
    【详解】(1)由题意可得,解得,
    所以椭圆方程为.
    (2)由题意可知:直线的斜率存在,设,
    联立方程,消去y得:,
    则,解得,
    可得,
    因为,则直线,
    令,解得,即,
    同理可得,


    所以线段的中点是定点.

    【点睛】方法点睛:求解定值问题的三个步骤
    (1)由特例得出一个值,此值一般就是定值;
    (2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;
    (3)得出结论.
    22.(1)
    (2)
    【分析】(1)将给定点代入设出的方程求解即可;
    (2)设出直线方程,与椭圆C的方程联立,分情况讨论斜率是否存在,即可得解.
    【详解】(1)解:设椭圆E的方程为,过,
    则,解得,,
    所以椭圆E的方程为:.
    (2),所以,
    ①若过点的直线斜率不存在,直线.代入,
    可得,,代入AB方程,可得
    ,由得到.求得HN方程:
    ,过点.
    ②若过点的直线斜率存在,设.
    联立得,
    可得,,

    联立可得
    可求得此时,
    将,代入整理得,
    将代入,得
    显然成立,
    综上,可得直线HN过定点
    【点睛】求定点、定值问题常见的方法有两种:
    ①从特殊入手,求出定值,再证明这个值与变量无关;
    ②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
    23.(1)
    (2)
    【分析】(1)依题意可得,即可求出,从而求出椭圆方程;
    (2)首先表示出直线方程,设、,联立直线与椭圆方程,消元列出韦达定理,由直线、的方程,表示出、,根据得到方程,解得即可;
    【详解】(1)解:依题意可得,,又,
    所以,所以椭圆方程为;
    (2)解:依题意过点的直线为,设、,不妨令,
    由,消去整理得,
    所以,解得,
    所以,,
    直线的方程为,令,解得,
    直线的方程为,令,解得,
    所以

    所以,



    整理得,解得
    24.(1)
    (2)见解析
    【分析】(1)利用焦点坐标求得的值,利用渐近线方程求得的关系,进而利用的平方关系求得的值,得到双曲线的方程;
    (2)先分析得到直线的斜率存在且不为零,设直线AB的斜率为k, M(x0,y0),由③|AM|=|BM|等价分析得到;由直线和的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ的斜率,由②等价转化为,由①在直线上等价于,然后选择两个作为已知条件一个作为结论,进行证明即可.
    【详解】(1)右焦点为,∴,∵渐近线方程为,∴,∴,∴,∴,∴.
    ∴C的方程为:;
    (2)由已知得直线的斜率存在且不为零,直线的斜率不为零,
    若选由①②推③或选由②③推①:由②成立可知直线的斜率存在且不为零;
    若选①③推②,则为线段的中点,假若直线的斜率不存在,则由双曲线的对称性可知在轴上,即为焦点,此时由对称性可知、关于轴对称,与从而,已知不符;
    总之,直线的斜率存在且不为零.
    设直线的斜率为,直线方程为,
    则条件①在上,等价于;
    两渐近线的方程合并为,
    联立消去y并化简整理得:
    设,线段中点为,则,
    设,
    则条件③等价于,
    移项并利用平方差公式整理得:

    ,即,
    即;
    由题意知直线的斜率为, 直线的斜率为,
    ∴由,
    ∴,
    所以直线的斜率,
    直线,即,
    代入双曲线的方程,即中,
    得:,
    解得的横坐标:,
    同理:,

    ∴,
    ∴条件②等价于,
    综上所述:
    条件①在上,等价于;
    条件②等价于;
    条件③等价于;
    选①②推③:
    由①②解得:,∴③成立;
    选①③推②:
    由①③解得:,,
    ∴,∴②成立;
    选②③推①:
    由②③解得:,,∴,
    ∴,∴①成立.
    25.(1);
    (2).
    【分析】(1)由抛物线的定义可得,即可得解;
    (2)法一:设点的坐标及直线,由韦达定理及斜率公式可得,再由差角的正切公式及基本不等式可得,设直线,结合韦达定理可解.
    【详解】(1)抛物线的准线为,当与x轴垂直时,点M的横坐标为p,
    此时,所以,
    所以抛物线C的方程为;
    (2)[方法一]:【最优解】直线方程横截式
    设,直线,
    由可得,,
    由斜率公式可得,,
    直线,代入抛物线方程可得,
    ,所以,同理可得,
    所以
    又因为直线MN、AB的倾斜角分别为,所以,
    若要使最大,则,设,则,
    当且仅当即时,等号成立,
    所以当最大时,,设直线,
    代入抛物线方程可得,
    ,所以,
    所以直线.
    [方法二]:直线方程点斜式
    由题可知,直线MN的斜率存在.
    设,直线
    由 得:,,同理,.
    直线MD:,代入抛物线方程可得:,同理,.
    代入抛物线方程可得:,所以,同理可得,
    由斜率公式可得:
    (下同方法一)若要使最大,则,
    设,则,
    当且仅当即时,等号成立,
    所以当最大时,,设直线,
    代入抛物线方程可得,,所以,所以直线.
    [方法三]:三点共线
    设,
    设,若 P、M、N三点共线,由
    所以,化简得,
    反之,若,可得MN过定点
    因此,由M、N、F三点共线,得,
    由M、D、A三点共线,得,
    由N、D、B三点共线,得,
    则,AB过定点(4,0)
    (下同方法一)若要使最大,则,
    设,则,
    当且仅当即时,等号成立,
    所以当最大时,,所以直线.
    【整体点评】(2)法一:利用直线方程横截式,简化了联立方程的运算,通过寻找直线的斜率关系,由基本不等式即可求出直线AB的斜率,再根据韦达定理求出直线方程,是该题的最优解,也是通性通法;
    法二:常规设直线方程点斜式,解题过程同解法一;
    法三:通过设点由三点共线寻找纵坐标关系,快速找到直线过定点,省去联立过程,也不失为一种简化运算的好方法.
    26.(1);
    (2)的交点坐标为,,的交点坐标为,.
    【分析】(1)消去,即可得到的普通方程;
    (2)将曲线的方程化成普通方程,联立求解即解出.
    【详解】(1)因为,,所以,即的普通方程为.
    (2)因为,所以,即的普通方程为,
    由,即的普通方程为.
    联立,解得:或,即交点坐标为,;
    联立,解得:或,即交点坐标为,.
    相关试卷

    专题04 轨迹方程的求法(讲义)-2024高考数学二轮复习解析几何压轴题: 这是一份专题04 轨迹方程的求法(讲义)-2024高考数学二轮复习解析几何压轴题,文件包含专题04轨迹方程的求法讲义原卷版docx、专题04轨迹方程的求法讲义教师版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    专题04 轨迹方程的求法(模拟+真题)-2024高考数学二轮复习解析几何压轴题: 这是一份专题04 轨迹方程的求法(模拟+真题)-2024高考数学二轮复习解析几何压轴题,文件包含专题04轨迹方程的求法模拟+真题原卷版docx、专题04轨迹方程的求法模拟+真题教师版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    备战2024年高考数学二轮复习专题01解析几何中的轨迹方程问题(原卷版+解析): 这是一份备战2024年高考数学二轮复习专题01解析几何中的轨迹方程问题(原卷版+解析),共49页。试卷主要包含了直接法,相关点法,定义法,消参法与交轨法等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map