![2025届高考数学一轮复习三年真题汇编专题18-2解析几何轨迹方程问题01](http://m.enxinlong.com/img-preview/3/3/15878897/1-1718841538703/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届高考数学一轮复习三年真题汇编专题18-2解析几何轨迹方程问题02](http://m.enxinlong.com/img-preview/3/3/15878897/1-1718841538769/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届高考数学一轮复习三年真题汇编专题18-2解析几何轨迹方程问题03](http://m.enxinlong.com/img-preview/3/3/15878897/1-1718841538802/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届高考数学一轮复习三年真题汇编专题18-2解析几何轨迹方程问题01](http://m.enxinlong.com/img-preview/3/3/15878897/0-1718841512373/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届高考数学一轮复习三年真题汇编专题18-2解析几何轨迹方程问题02](http://m.enxinlong.com/img-preview/3/3/15878897/0-1718841512449/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届高考数学一轮复习三年真题汇编专题18-2解析几何轨迹方程问题03](http://m.enxinlong.com/img-preview/3/3/15878897/0-1718841512480/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届高考数学一轮复习三年真题汇编专题18-2解析几何轨迹方程问题
展开【分析】设点,由题意,根据中点的坐标表示可得,代入圆的方程即可求解.
【详解】设点,则,
因为为的中点,所以,即,
又在圆上,
所以,即,
即点的轨迹方程为.
故选:A
2.C
【分析】可利用三边斜率问题与正弦定理,转化出三边比例,设,由面积公式求出,由勾股定理得出,结合第一定义再求出.
【详解】如下图:由题可知,点必落在第四象限,,设,
,由,求得,
因为,所以,求得,即,
,由正弦定理可得:,
则由得,
由得,
则,
由双曲线第一定义可得:,,
所以双曲线的方程为.
故选:C
3.D
【分析】先由点到直线的距离公式求出,设,由得到,.再由三角形的面积公式得到,从而得到,则可得到,解出,代入双曲线的方程即可得到答案.
【详解】如图,
因为,不妨设渐近线方程为,即,
所以,
所以.
设,则,所以,所以.
因为,所以,所以,所以,
所以,
因为,
所以,
所以,解得,
所以双曲线的方程为
故选:D
4.B
【分析】根据离心率及,解得关于的等量关系式,即可得解.
【详解】解:因为离心率,解得,,
分别为C的左右顶点,则,
B为上顶点,所以.
所以,因为
所以,将代入,解得,
故椭圆的方程为.
故选:B.
5.C
【分析】由已知可得出的值,求出点的坐标,分析可得,由此可得出关于、、的方程组,解出这三个量的值,即可得出双曲线的标准方程.
【详解】抛物线的准线方程为,则,则、,
不妨设点为第二象限内的点,联立,可得,即点,
因为且,则为等腰直角三角形,
且,即,可得,
所以,,解得,因此,双曲线的标准方程为.
故选:C.
6.ABD
【分析】根据题设将原点代入曲线方程后可求,故可判断A的正误,结合曲线方程可判断B的正误,利用特例法可判断C的正误,将曲线方程化简后结合不等式的性质可判断D的正误.
【详解】对于A:设曲线上的动点,则且,
因为曲线过坐标原点,故,解得,故A正确.
对于B:又曲线方程为,而,
故.
当时,,
故在曲线上,故B正确.
对于C:由曲线的方程可得,取,
则,而,故此时,
故在第一象限内点的纵坐标的最大值大于1,故C错误.
对于D:当点在曲线上时,由C的分析可得,
故,故D正确.
故选:ABD.
【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.
7.
【分析】根据给定条件,求出双曲线的实半轴、虚半轴长,再写出的方程作答.
【详解】令双曲线的实半轴、虚半轴长分别为,显然双曲线的中心为原点,焦点在x轴上,其半焦距,
由双曲线的离心率为,得,解得,则,
所以双曲线的方程为.
故答案为:
8.
【分析】设出点M的坐标,利用和均在上,求得圆心及半径,即可得圆的方程.
【详解】[方法一]:三点共圆
∵点M在直线上,
∴设点M为,又因为点和均在上,
∴点M到两点的距离相等且为半径R,
∴,
,解得,
∴,,
的方程为.
故答案为:
[方法二]:圆的几何性质
由题可知,M是以(3,0)和(0,1)为端点的线段垂直平分线 y=3x-4与直线的交点(1,-1)., 的方程为.
故答案为:
9.或或或.
【分析】方法一:设圆的方程为,根据所选点的坐标,得到方程组,解得即可;
【详解】[方法一]:圆的一般方程
依题意设圆的方程为,
(1)若过,,,则,解得,
所以圆的方程为,即;
(2)若过,,,则,解得,
所以圆的方程为,即;
(3)若过,,,则,解得,
所以圆的方程为,即;
(4)若过,,,则,解得,所以圆的方程为,即;
故答案为:或 或 或.
[方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心)
设
(1)若圆过三点,圆心在直线,设圆心坐标为,
则,所以圆的方程为;
(2)若圆过三点, 设圆心坐标为,则,所以圆的方程为;
(3)若圆过 三点,则线段的中垂线方程为,线段 的中垂线方程 为,联立得 ,所以圆的方程为;
(4)若圆过三点,则线段的中垂线方程为, 线段中垂线方程为 ,联立得,所以圆的方程为.
故答案为:或 或 或.
【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;
方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.
10.或或
【分析】先判断两圆位置关系,分情况讨论即可.
【详解】[方法一]:
显然直线的斜率不为0,不妨设直线方程为,
于是,
故①,于是或,
再结合①解得或或,
所以直线方程有三条,分别为,,
填一条即可
[方法二]:
设圆的圆心,半径为,
圆的圆心,半径,
则,因此两圆外切,
由图像可知,共有三条直线符合条件,显然符合题意;
又由方程和相减可得方程,
即为过两圆公共切点的切线方程,
又易知两圆圆心所在直线OC的方程为,
直线OC与直线的交点为,
设过该点的直线为,则,解得,
从而该切线的方程为填一条即可
[方法三]:
圆的圆心为,半径为,
圆的圆心为,半径为,
两圆圆心距为,等于两圆半径之和,故两圆外切,
如图,
当切线为l时,因为,所以,设方程为
O到l的距离,解得,所以l的方程为,
当切线为m时,设直线方程为,其中,,
由题意,解得,
当切线为n时,易知切线方程为,
故答案为:或或.
11.
【分析】令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解;
【详解】[方法一]:弦中点问题:点差法
令的中点为,设,,利用点差法得到,
设直线,,,求出、的坐标,
再根据求出、,即可得解;
解:令的中点为,因为,所以,
设,,则,,
所以,即
所以,即,设直线,,,
令得,令得,即,,
所以,
即,解得或(舍去),
又,即,解得或(舍去),
所以直线,即;
故答案为:
[方法二]:直线与圆锥曲线相交的常规方法
解:由题意知,点既为线段的中点又是线段MN的中点,
设,,设直线,,,
则,,,因为,所以
联立直线AB与椭圆方程得消掉y得
其中,
∴AB中点E的横坐标,又,∴
∵,,∴,又,解得m=2
所以直线,即
12.(1)
(2)直线的方程为或.
【分析】(1)代入两点得到关于的方程,解出即可;
(2)方法一:以为底,求出三角形的高,即点到直线的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到点坐标,则得到直线的方程;方法二:同法一得到点到直线的距离,再设,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点到直线的距离,利用椭圆的参数方程即可求解;法四:首先验证直线斜率不存在的情况,再设直线,联立椭圆方程,得到点坐标,再利用点到直线距离公式即可;法五:首先考虑直线斜率不存在的情况,再设,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘表达面积即可.
【详解】(1)由题意得,解得,
所以.
(2)法一:,则直线的方程为,即,
,由(1)知,
设点到直线的距离为,则,
则将直线沿着与垂直的方向平移单位即可,
此时该平行线与椭圆的交点即为点,
设该平行线的方程为:,
则,解得或,
当时,联立,解得或,
即或,
当时,此时,直线的方程为,即,
当时,此时,直线的方程为,即,
当时,联立得,
,此时该直线与椭圆无交点.
综上直线的方程为或.
法二:同法一得到直线的方程为,
点到直线的距离,
设,则,解得或,
即或,以下同法一.
法三:同法一得到直线的方程为,
点到直线的距离,
设,其中,则有,
联立,解得或,
即或,以下同法一;
法四:当直线的斜率不存在时,此时,
,符合题意,此时,直线的方程为,即,
当线的斜率存在时,设直线的方程为,
联立椭圆方程有,则,其中,即,
解得或,,,
令,则,则
同法一得到直线的方程为,
点到直线的距离,
则,解得,
此时,则得到此时,直线的方程为,即,
综上直线的方程为或.
法五:当的斜率不存在时,到距离,
此时不满足条件.
当的斜率存在时,设,令,
,消可得,
,且,即,
,
到直线距离,
或,均满足题意,或,即或.
法六:当的斜率不存在时,到距离,
此时不满足条件.
当直线斜率存在时,设,
设与轴的交点为,令,则,
联立,则有,
,
其中,且,
则,
则,解的或,经代入判别式验证均满足题意.
则直线为或,即或.
13.(1)
(2)存在,使得恒成立.
【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.
(2)设该直线方程为:,, 联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用表示,再根据可求的范围.
【详解】(1)因为椭圆的离心率为,故,,其中为半焦距,
所以,故,
故,所以,,故椭圆方程为:.
(2)
若过点的动直线的斜率存在,则可设该直线方程为:,
设,
由可得,
故且
而,
故
,
因为恒成立,故,解得.
若过点的动直线的斜率不存在,则或,
此时需,两者结合可得.
综上,存在,使得恒成立.
【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.
14.(1)
(2)证明见解析
【分析】(1)结合题意得到,,再结合,解之即可;
(2)依题意求得直线、与的方程,从而求得点的坐标,进而求得,再根据题意求得,得到,由此得解.
【详解】(1)依题意,得,则,
又分别为椭圆上下顶点,,所以,即,
所以,即,则,
所以椭圆的方程为.
(2)因为椭圆的方程为,所以,
因为为第一象限上的动点,设,则,
易得,则直线的方程为,
,则直线的方程为,
联立,解得,即,
而,则直线的方程为,
令,则,解得,即,
又,则,,
所以
,
又,即,
显然,与不重合,所以.
15.(1)
(2)
【分析】(1)由题意得,进一步得,由此即可得解;
(2)设,,联立椭圆方程,由韦达定理有,而,令,即可得解.
【详解】(1)由题意,从而,
所以椭圆方程为,离心率为;
(2)直线斜率不为0,否则直线与椭圆无交点,矛盾,
从而设,,
联立,化简并整理得,
由题意,即应满足,
所以,
若直线斜率为0,由椭圆的对称性可设,
所以,在直线方程中令,
得,
所以,
此时应满足,即应满足或,
综上所述,满足题意,此时或.
16.(1)
(2)证明见解析
【分析】(1)设,根据的坐标及轴可求基本量,故可求椭圆方程.
(2)设,,,联立直线方程和椭圆方程,用的坐标表示,结合韦达定理化简前者可得,故可证轴.
【详解】(1)设,由题设有且,故,故,故,
故椭圆方程为.
(2)直线的斜率必定存在,设,,,
由可得,
故,故,
又,
而,故直线,故,
所以
,
故,即轴.
【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:
(1)设直线方程,设交点坐标为;
(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,注意的判断;
(3)列出韦达定理;
(4)将所求问题或题中的关系转化为、(或、)的形式;
(5)代入韦达定理求解.
17.(1)
(2)
【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意的取值范围;
(2)根据曲线的方程,结合图形通过平移直线分析相应的临界位置,结合点到直线的距离公式运算求解即可.
【详解】(1)因为,即,可得,
整理得,表示以为圆心,半径为1的圆,
又因为,
且,则,则,
故.
(2)因为(为参数,),
整理得,表示圆心为,半径为2,且位于第二象限的圆弧,
如图所示,若直线过,则,解得;
若直线,即与相切,则,解得,
若直线与均没有公共点,则或,
即实数的取值范围.
【点睛】
18.(1)
(2)见解析
【分析】(1)设,根据题意列出方程,化简即可;
(2)法一:设矩形的三个顶点,且,分别令,,且,利用放缩法得,设函数,利用导数求出其最小值,则得的最小值,再排除边界值即可.
法二:设直线的方程为,将其与抛物线方程联立,再利用弦长公式和放缩法得,利用换元法和求导即可求出周长最值,再排除边界值即可.
法三:利用平移坐标系法,再设点,利用三角换元再对角度分类讨论,结合基本不等式即可证明.
【详解】(1)设,则,两边同平方化简得,
故.
(2)法一:设矩形的三个顶点在上,且,易知矩形四条边所在直线的斜率均存在,且不为0,
则,令,
同理令,且,则,
设矩形周长为,由对称性不妨设,,
则,易知
则令,
令,解得,
当时,,此时单调递减,
当,,此时单调递增,
则,
故,即.
当时,,且,即时等号成立,矛盾,故,
得证.
法二:不妨设在上,且,
依题意可设,易知直线,的斜率均存在且不为0,
则设,的斜率分别为和,由对称性,不妨设,
直线的方程为,
则联立得,
,则
则,
同理,
令,则,设,
则,令,解得,
当时,,此时单调递减,
当,,此时单调递增,
则,
,
但,此处取等条件为,与最终取等时不一致,故.
法三:为了计算方便,我们将抛物线向下移动个单位得抛物线,
矩形变换为矩形,则问题等价于矩形的周长大于.
设 , 根据对称性不妨设 .
则 , 由于 , 则 .
由于 , 且 介于 之间,
则 . 令 ,
,则,从而
故
①当时,
②当 时,由于,从而,
从而又,
故,由此
,
当且仅当时等号成立,故,故矩形周长大于.
.
【点睛】关键点睛:本题的第二个的关键是通过放缩得,同时为了简便运算,对右边的式子平方后再设新函数求导,最后再排除边界值即可.
19.(1)椭圆的方程为,离心率为.
(2).
【分析】(1)由解得,从而求出,代入椭圆方程即可求方程,再代入离心率公式即求离心率.
(2)先设直线的方程,与椭圆方程联立,消去,再由韦达定理可得,从而得到点和点坐标.由得,即可得到关于的方程,解出,代入直线的方程即可得到答案.
【详解】(1)如图,
由题意得,解得,所以,
所以椭圆的方程为,离心率为.
(2)由题意得,直线斜率存在,由椭圆的方程为可得,
设直线的方程为,
联立方程组,消去整理得:,
由韦达定理得,所以,
所以,.
所以,,,
所以,
所以,即,
解得,所以直线的方程为.
20.(1)
(2)证明见解析.
【分析】(1)由题意求得的值即可确定双曲线方程;
(2)设出直线方程,与双曲线方程联立,然后由点的坐标分别写出直线与的方程,联立直线方程,消去,结合韦达定理计算可得,即交点的横坐标为定值,据此可证得点在定直线上.
【详解】(1)设双曲线方程为,由焦点坐标可知,
则由可得,,
双曲线方程为.
(2)由(1)可得,设,
显然直线的斜率不为0,所以设直线的方程为,且,
与联立可得,且,
则,
直线的方程为,直线的方程为,
联立直线与直线的方程可得:
,
由可得,即,
据此可得点在定直线上运动.
【点睛】关键点点睛:求双曲线方程的定直线问题,意在考查学生的计算能力,转化能力和综合应用能力,其中根据设而不求的思想,利用韦达定理得到根与系数的关系可以简化运算,是解题的关键.
21.(1)
(2)证明见详解
【分析】(1)根据题意列式求解,进而可得结果;
(2)设直线的方程,进而可求点的坐标,结合韦达定理验证为定值即可.
【详解】(1)由题意可得,解得,
所以椭圆方程为.
(2)由题意可知:直线的斜率存在,设,
联立方程,消去y得:,
则,解得,
可得,
因为,则直线,
令,解得,即,
同理可得,
则
,
所以线段的中点是定点.
【点睛】方法点睛:求解定值问题的三个步骤
(1)由特例得出一个值,此值一般就是定值;
(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;
(3)得出结论.
22.(1)
(2)
【分析】(1)将给定点代入设出的方程求解即可;
(2)设出直线方程,与椭圆C的方程联立,分情况讨论斜率是否存在,即可得解.
【详解】(1)解:设椭圆E的方程为,过,
则,解得,,
所以椭圆E的方程为:.
(2),所以,
①若过点的直线斜率不存在,直线.代入,
可得,,代入AB方程,可得
,由得到.求得HN方程:
,过点.
②若过点的直线斜率存在,设.
联立得,
可得,,
且
联立可得
可求得此时,
将,代入整理得,
将代入,得
显然成立,
综上,可得直线HN过定点
【点睛】求定点、定值问题常见的方法有两种:
①从特殊入手,求出定值,再证明这个值与变量无关;
②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
23.(1)
(2)
【分析】(1)依题意可得,即可求出,从而求出椭圆方程;
(2)首先表示出直线方程,设、,联立直线与椭圆方程,消元列出韦达定理,由直线、的方程,表示出、,根据得到方程,解得即可;
【详解】(1)解:依题意可得,,又,
所以,所以椭圆方程为;
(2)解:依题意过点的直线为,设、,不妨令,
由,消去整理得,
所以,解得,
所以,,
直线的方程为,令,解得,
直线的方程为,令,解得,
所以
,
所以,
即
即
即
整理得,解得
24.(1)
(2)见解析
【分析】(1)利用焦点坐标求得的值,利用渐近线方程求得的关系,进而利用的平方关系求得的值,得到双曲线的方程;
(2)先分析得到直线的斜率存在且不为零,设直线AB的斜率为k, M(x0,y0),由③|AM|=|BM|等价分析得到;由直线和的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ的斜率,由②等价转化为,由①在直线上等价于,然后选择两个作为已知条件一个作为结论,进行证明即可.
【详解】(1)右焦点为,∴,∵渐近线方程为,∴,∴,∴,∴,∴.
∴C的方程为:;
(2)由已知得直线的斜率存在且不为零,直线的斜率不为零,
若选由①②推③或选由②③推①:由②成立可知直线的斜率存在且不为零;
若选①③推②,则为线段的中点,假若直线的斜率不存在,则由双曲线的对称性可知在轴上,即为焦点,此时由对称性可知、关于轴对称,与从而,已知不符;
总之,直线的斜率存在且不为零.
设直线的斜率为,直线方程为,
则条件①在上,等价于;
两渐近线的方程合并为,
联立消去y并化简整理得:
设,线段中点为,则,
设,
则条件③等价于,
移项并利用平方差公式整理得:
,
,即,
即;
由题意知直线的斜率为, 直线的斜率为,
∴由,
∴,
所以直线的斜率,
直线,即,
代入双曲线的方程,即中,
得:,
解得的横坐标:,
同理:,
∴
∴,
∴条件②等价于,
综上所述:
条件①在上,等价于;
条件②等价于;
条件③等价于;
选①②推③:
由①②解得:,∴③成立;
选①③推②:
由①③解得:,,
∴,∴②成立;
选②③推①:
由②③解得:,,∴,
∴,∴①成立.
25.(1);
(2).
【分析】(1)由抛物线的定义可得,即可得解;
(2)法一:设点的坐标及直线,由韦达定理及斜率公式可得,再由差角的正切公式及基本不等式可得,设直线,结合韦达定理可解.
【详解】(1)抛物线的准线为,当与x轴垂直时,点M的横坐标为p,
此时,所以,
所以抛物线C的方程为;
(2)[方法一]:【最优解】直线方程横截式
设,直线,
由可得,,
由斜率公式可得,,
直线,代入抛物线方程可得,
,所以,同理可得,
所以
又因为直线MN、AB的倾斜角分别为,所以,
若要使最大,则,设,则,
当且仅当即时,等号成立,
所以当最大时,,设直线,
代入抛物线方程可得,
,所以,
所以直线.
[方法二]:直线方程点斜式
由题可知,直线MN的斜率存在.
设,直线
由 得:,,同理,.
直线MD:,代入抛物线方程可得:,同理,.
代入抛物线方程可得:,所以,同理可得,
由斜率公式可得:
(下同方法一)若要使最大,则,
设,则,
当且仅当即时,等号成立,
所以当最大时,,设直线,
代入抛物线方程可得,,所以,所以直线.
[方法三]:三点共线
设,
设,若 P、M、N三点共线,由
所以,化简得,
反之,若,可得MN过定点
因此,由M、N、F三点共线,得,
由M、D、A三点共线,得,
由N、D、B三点共线,得,
则,AB过定点(4,0)
(下同方法一)若要使最大,则,
设,则,
当且仅当即时,等号成立,
所以当最大时,,所以直线.
【整体点评】(2)法一:利用直线方程横截式,简化了联立方程的运算,通过寻找直线的斜率关系,由基本不等式即可求出直线AB的斜率,再根据韦达定理求出直线方程,是该题的最优解,也是通性通法;
法二:常规设直线方程点斜式,解题过程同解法一;
法三:通过设点由三点共线寻找纵坐标关系,快速找到直线过定点,省去联立过程,也不失为一种简化运算的好方法.
26.(1);
(2)的交点坐标为,,的交点坐标为,.
【分析】(1)消去,即可得到的普通方程;
(2)将曲线的方程化成普通方程,联立求解即解出.
【详解】(1)因为,,所以,即的普通方程为.
(2)因为,所以,即的普通方程为,
由,即的普通方程为.
联立,解得:或,即交点坐标为,;
联立,解得:或,即交点坐标为,.
专题04 轨迹方程的求法(讲义)-2024高考数学二轮复习解析几何压轴题: 这是一份专题04 轨迹方程的求法(讲义)-2024高考数学二轮复习解析几何压轴题,文件包含专题04轨迹方程的求法讲义原卷版docx、专题04轨迹方程的求法讲义教师版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
专题04 轨迹方程的求法(模拟+真题)-2024高考数学二轮复习解析几何压轴题: 这是一份专题04 轨迹方程的求法(模拟+真题)-2024高考数学二轮复习解析几何压轴题,文件包含专题04轨迹方程的求法模拟+真题原卷版docx、专题04轨迹方程的求法模拟+真题教师版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
备战2024年高考数学二轮复习专题01解析几何中的轨迹方程问题(原卷版+解析): 这是一份备战2024年高考数学二轮复习专题01解析几何中的轨迹方程问题(原卷版+解析),共49页。试卷主要包含了直接法,相关点法,定义法,消参法与交轨法等内容,欢迎下载使用。