


所属成套资源:人教版七年级数学上册专题特训(原卷版+解析)
人教版七年级数学上册专题08一元一次方程应用压轴题的三种考法(原卷版+解析)
展开
这是一份人教版七年级数学上册专题08一元一次方程应用压轴题的三种考法(原卷版+解析),共27页。试卷主要包含了方案选择问题,销售利润问题,购物问题等内容,欢迎下载使用。
例.甲、乙两家超市新年期间推出优惠活动,推出如表购物优惠方案:
(1)小王需要购买价格为240元的商品,去哪家店更划算?
(2)小李带了252元去购物、为了买到最多的商品,应选择哪家超市?最多能买到原价为多少元的商品?
(3)小刘在甲超市购物、两次购物分别付了80元和288元,如果小刘把这两次购物改为一次性购物,付款多少元?
【变式训练1】为了防治“新型冠状病毒”,某中学拟向厂家购买消毒剂和红外线测温枪,积极做好教室消毒和师生的测温工作。
(1)若按原价购买一瓶消毒剂和一支红外线测温枪共需要400元,已知一支测温枪的价格比一瓶消毒剂的价格的6倍还贵15元,求每瓶消毒剂和每支测温枪的价格.
(2)由于采购量大,厂家推出两种购买方案(如下表):
若学校有75个班级,计划每班配置1支红外线测温枪和20瓶消毒剂,则学校选择哪种购买方案的总费用更低?
【变式训练2】北京某景区,门票价格规定如下表:
某校七年级(1)、(2)两个班共102人去该景区游玩,其中(1)班人数多于(2)班人数,且(1)班人数不足100人,如果两个班分别以班为单位单独购买门票,一共应付5500元.
(1)去该景区游玩的七年级(1)班和(2)班各有多少学生?
(2)如果七年级(1)班有12名学生因需参加学校竞赛不能外出游玩,(2)班学生可以全员参加游玩,作为组织者,你有几种购票方案?通过比较,你该如何购票才能最省钱?
【变式训练3】下表是中国电信两种“套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收费,主叫超时和上网超流量部分加收超时费和超流量费)
(1)若某月小萱主叫通话时间为分钟,上网流量为,则她按方式一计费需________元,按方式二计费需________元;若她按方式二计费需元,主叫通话时间为分钟,则上网流量为________.
(2)若上网流量为,是否存在某主叫通话时间(分钟),按方式一和方式二的计费相等?若存在,请求出的值;若不存在,请说明理由.
(3)若上网流量为,直接写出当月主叫通话时间(分钟)满足什么条件时,选择方式一省钱;当每月主叫通话时间(分钟)满足什么条件时,选择方式二省钱.
【变式训练4】小王看到如下两个超市的促销信息:
甲超市:全场8.8折
乙超市:不超过200元,不予优惠;超过200元而不大于500元,打九折;超过500元,500元的部分优惠10%,超过500元的部分打八折.
(1)当一次性购物标价总额是300元时,甲、乙超市实付款分别是多少?
(2)当标价总额是多少时,甲、乙超市实付款一样?
(3)小王两次到乙超市分别购物付款198元和466元,若他只去一次该超市购买同样多的商品,可以节省多少元?
类型二、销售利润问题
例.疫情隔离期间,为了降低外出感染风险,各大超市开通了送货到小区的便民服务,某超市推出适合大多数家庭需要的以萝卜、土豆、洋葱三种蔬菜搭配装袋供市民直接选择.其中,甲种搭配每袋装有5千克萝卜、1千克土豆、1千克洋葱;乙种搭配每袋装有3千克萝卜、2千克土豆、2千克洋葱.甲、乙两种袋装蔬菜每袋成本价分别为袋中萝卜、土豆、洋葱三种蔬菜的成本价之和.已知萝卜每千克成本价为2元,甲种搭配每袋售价为28元,利润率为,乙种搭配的利润率为.若这两种袋装蔬菜的销售利润率达到,则该商超销售甲、乙两种袋装蔬菜的数量之比是 .(商品的利润率=×100%).
【变式训练1】十一前夕,某商场从厂家购进了甲、乙两种商品,甲种商品每件的进价比乙种商品每件的进价多20元,购进甲种商品4件与购进乙种商品5件的进价相同.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)该商场从厂家购进了甲、乙两种商品共50件,所用资金恰好为4600元,出售时,甲种商品在进价的基础上加价40%进行标价;乙商品按标价出售,则每件可获利30元,若按标价出售甲、乙两种商品,则全部售出后共可获利多少元?
(3)在(2)的条件下,十一期间,甲商品按标价的九折出售,乙商品按标价出售一部分商品后进行促销,按标价的九折再让利4元出售,甲、乙两种商品全部售出,总获利比全部按标价售出获利少了,则乙商品按标价售出多少件?
【变式训练2】春节,即农历新年,是一年之岁首、传统意义上的年节.俗称新春、新年、新岁、岁旦、年禧、大年等,口头上又称度岁、庆岁、过年、过大年.春节历史悠久,由上古时代岁首祈年祭祀演变而来.为了喜迎新春,某水果店现推出水果篮和坚果礼盒,每个水果篮的成本为元.每盒坚果礼盒的成本为元,每个水果篮的售价比每盒坚果的售价多元,售卖个水果篮获得的利润和售卖盒坚果礼盒获得的利润一样多.
(1)求每个水果篮和每盒坚果礼盒的售价;
(2)该水果店第一批购进了个水果篮和盒坚果礼盒,为回馈客户该水果店计划将每个水果篮打折出售,坚果礼盒原价出售,售完这批水果篮和坚果礼盒水果店共盈利元,按此计划每个水果篮应打几折出售?
(3)在年末时,该水果店购进水果篮个和坚果礼盒盒,进行“新春特惠”促销活动,水果店规定,每人每次最多购买水果篮1个或坚果礼盒1盒.水果篮每个售价打九折后再参与店内“每满元减元”的活动,坚果礼盒每盒直接参与店内“每满元减元”的活动;售卖结束时,坚果礼盒全部售卖完,售卖过程中由于部分水果变质导致水果篮有个没办法售出.若该水果店获得的利润率为,求的值.
类型三、购物问题
例.某超市在“双十一”活动期间,推出如下购物优惠方案:
①一次性购物在100元(不含100元)以内,不享受优惠;
②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;
③一次性购物在350元(含350元)以上,一律享受八折优惠.
小敏在该超市两次购物分别付了85元和288元,若小敏把这两次购物改为一次性购物,则小敏需付款 元.
【变式训练1】平价商场经销甲、乙两种商品,甲种商品每件进价40元,利润率为;乙种商品每件进价50元,售价80元.
(1)甲种商品每件售价为 元,每件乙种商品利润率为 ;
(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲乙两种商品各多少件?
(3)在“元旦”期间,该商场只对甲乙两种商品进行如表的优惠促销活动:
按上述优惠条件,若小聪第一天只购买乙种商品,实际付款360元,第二天只购买甲种商品实际付款432元,求小聪这两天在该商场购买甲、乙两种商品一共多少件?
【变式训练2】制定销售单价,如表:
(1)若买100件花______元,买300件花______元;
(2)小明买这种商品花了338元,列方程求购买这种商品多少件?
(3)若小明花了元,恰好购买件这种商品,求的值.
【变式训练3】双十一临近,武汉掀起购物狂潮,现有甲,乙、丙三个商场开展的促销活动如下表所示:
根据以上活动信息,解决以下问题:
(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?完成下表后就可以做出选择
(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款也一样,请问这条裤子的标价是多少元?
(3)丙商场又推出“先打折”,“再满100元减50元”的活动,张先生买了一件标价为630元的上衣,张先生发现竟然比没打折多付了20元钱,问丙商场先打了多少折后再参加活动(结果精确到0.01)
课后训练
1.兔年来临之际,某商家推出了两种兔年吉祥物礼盒进行售卖,其中A类礼盒中有4个幸福兔吉祥物,4个开心兔吉祥物:B类礼盒中有2个幸福兔吉祥物,4个开心兔吉祥物,6个快乐兔吉祥物,两种礼盒的成本分别为盒中吉祥物的成本之和,包装费用忽略不计,其中,每个快乐兔吉祥物的成本为每个开心兔成本的,每个幸福兔吉祥物的成本比每个开心兔的成本少,且每个幸福兔吉祥物和每个开心兔吉祥物的成本均为整数.已知A类礼盒的售价为48元,利润率为.元旦节当天一共卖出了两类礼盒共计142盒,且卖出的B类礼盒至少50盒.工作人员在核算总成本的过程中,把每个幸福兔吉祥物和每个开心兔吉祥物的成本看反了,并用看反的每个开心兔吉祥物的成本的去计算每个快乐兔吉祥物的成本,结果算出来的总成本比实际总成本少了480元,则当日实际卖出的两种礼盒的总成本为 元.
2.某人去水果批发市场采购苹果,他看中了A,B两家苹果.这两家苹果品质一样,零售价都为6元/千克,批发价各不相同.
A家规定:批发数量不超过1000千克,按全部零售价的92%优惠;批发数量超过1000千克不超过2000千克,按全部零售价的90%优惠;超过2000千克的按全部零售价的88%优惠.
B家的规定如下表:
【表格说明:批发价格分段计算,如:某人批发苹果2100千克,则总费用】
(1)如果他批发800千克苹果,则他在A家批发需要_________元,在B家批发需要_________元;
(2)如果他批发x千克苹果,则他在A家批发需要_________元,在B家批发需要_________元(用含x的代数式表示);
(3)现在他要批发12144元苹果,应该选择哪一家水果店?请说明理由.
3.某商场促销方案规定:商场内所有商品按标价的80%出售,同时当顾客在商场内一次性消费满一定金额后,按下表获得相应的返还金额.
注:500~1000表示消费金额大于500元且小于或等于1000元,其他类同。
根据上述促销方案,顾客在该商场购物可以获得双重优惠例如,若购买标价为1000元的商品,则消费金额为800元,获得的优惠额为1000×(1-80%)+60=260(元)。
(1)购买一件标价为600元的商品,顾客获得的优惠额是 元.
(2)若顾客在该商场购买一件标价x元(x>1250)的商品,那么该顾客获得的优惠额为多少?(用含有x的代数式表示)
(3)若顾客在该商场第一次购买一件标价x元(x>1250)的商品后,第二次又购买了一件标价为500元的商品,如果这名顾客一次性购买这两件商品,他所花掉的费用与分开购买相比有无节省?若有,节省多少元?
专题08 一元一次方程应用压轴题的三种考法
类型一、方案选择问题
例.甲、乙两家超市新年期间推出优惠活动,推出如表购物优惠方案:
(1)小王需要购买价格为240元的商品,去哪家店更划算?
(2)小李带了252元去购物、为了买到最多的商品,应选择哪家超市?最多能买到原价为多少元的商品?
(3)小刘在甲超市购物、两次购物分别付了80元和288元,如果小刘把这两次购物改为一次性购物,付款多少元?
【答案】(1)在甲超市更划算;
(2)应选择甲超市,最多能买到原价为280元的商品;
(3)把这两次购物改为一次性购物,付款320元或352元;
【分析】(1)比较在甲、乙超市分别所需支付的金额即可;
(2)求出252元在甲超市能购买的商品原价,再求出在乙超市购买的商品的原价,比较大小即可;
(3)先计算出支付80元和288元的商品原价,再将两次商品原价加一起参加优惠活动即可;
【详解】(1)解:甲超市购物所付的费用为:(元),
乙超市购物所付的费用为:(元),
∵,
∴在甲超市更划算;
(2)解:甲超市购买的商品原价:(元),
设乙超市超市购买的商品原价为x元,由题意得:
,解得:,
∵280>265,
∴应选择甲超市,最多能买到原价为280元的商品;
(3)解:∵,
∴第一次购买商品的原价小于100元,原价为80元,
∵,,
∴第二次购买商品的原价为100~350或大于350元,
设第二次购买商品的原价为m元,
①当时,
由题意得:(元),
(元),
∴把这两次购物改为一次性购物,付款320元;
②当时,
由题意得:(元),
(元),
∴把这两次购物改为一次性购物,付款352元;
综上,把这两次购物改为一次性购物,应付款320元或352元.
【点睛】本题考查一元一次方程的实际应用(方案选择),(1)(2)比较简单,(3)中因为,故需要对288元的商品原价进行讨论.
【变式训练1】为了防治“新型冠状病毒”,某中学拟向厂家购买消毒剂和红外线测温枪,积极做好教室消毒和师生的测温工作。
(1)若按原价购买一瓶消毒剂和一支红外线测温枪共需要400元,已知一支测温枪的价格比一瓶消毒剂的价格的6倍还贵15元,求每瓶消毒剂和每支测温枪的价格.
(2)由于采购量大,厂家推出两种购买方案(如下表):
若学校有75个班级,计划每班配置1支红外线测温枪和20瓶消毒剂,则学校选择哪种购买方案的总费用更低?
【答案】(1)一瓶消毒剂的价格为55元,一支测温枪的价格为345元
(2)学校选择A种购买方案的总费用更低
【分析】(1)设一瓶消毒剂的价格为x元,则一支测温枪的价格为元,根据题意可列出关于x的一元一次方程,解出x即可得出答案;
(2)分别计算出两种方案所需费用,比较即可.
【详解】(1)解:设一瓶消毒剂的价格为x元,则一支测温枪的价格为元,
根据题意可得:,
解得:,
∴
答:一瓶消毒剂的价格为55元,一支测温枪的价格为345元;
(2)解:根据题意可知该学校需要75支红外线测温枪和75×20=1500瓶消毒剂.
以A方案购买时,
∵每购100瓶消毒剂送1支测温枪,1500÷100=15支,
∴再购买75-15=60支测温枪即可,
∴此购买方案的总费用为元;
以B方案购买时,总费用为元;
∴以B方案购买的费用高于以A方案购买的费用.
故学校选择A种购买方案的总费用更低.
【点睛】本题考查一元一次方程的实际应用.根据题意找出等量关系,列出等式是解题关键.
【变式训练2】北京某景区,门票价格规定如下表:
某校七年级(1)、(2)两个班共102人去该景区游玩,其中(1)班人数多于(2)班人数,且(1)班人数不足100人,如果两个班分别以班为单位单独购买门票,一共应付5500元.
(1)去该景区游玩的七年级(1)班和(2)班各有多少学生?
(2)如果七年级(1)班有12名学生因需参加学校竞赛不能外出游玩,(2)班学生可以全员参加游玩,作为组织者,你有几种购票方案?通过比较,你该如何购票才能最省钱?
【答案】(1)七年级(1)班有62人,(2)班有40人
(2)七年级(1)班和(2)班应该联合起来一次购买101张门票最省钱
【分析】(1)设七年级(1)班有学生x人,则七年级(2)班有学生102-x人,因为其中(1)班人数多于(2)班人数,所以51
相关试卷
这是一份人教版九年级数学上册专题10几何图形旋转压轴题的三种考法(原卷版+解析),共39页。试卷主要包含了旋转最值问题,三角形中的旋转问题,四边形中的旋转问题等内容,欢迎下载使用。
这是一份人教版八年级数学上册专题06幂运算压轴题的三种考法(原卷版+解析),共15页。试卷主要包含了比较大小,化简求值,新定义问题等内容,欢迎下载使用。
这是一份人教版七年级数学上册专题10角的运动压轴题的三种考法(原卷版+解析),共44页。试卷主要包含了角度之间数量关系问题,定值问题,运动时间问题等内容,欢迎下载使用。
