年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    两条直线的位置关系课件-2025届高三数学一轮复习 (1)

    两条直线的位置关系课件-2025届高三数学一轮复习 (1)第1页
    两条直线的位置关系课件-2025届高三数学一轮复习 (1)第2页
    两条直线的位置关系课件-2025届高三数学一轮复习 (1)第3页
    两条直线的位置关系课件-2025届高三数学一轮复习 (1)第4页
    两条直线的位置关系课件-2025届高三数学一轮复习 (1)第5页
    两条直线的位置关系课件-2025届高三数学一轮复习 (1)第6页
    两条直线的位置关系课件-2025届高三数学一轮复习 (1)第7页
    两条直线的位置关系课件-2025届高三数学一轮复习 (1)第8页
    还剩52页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    两条直线的位置关系课件-2025届高三数学一轮复习 (1)

    展开

    这是一份两条直线的位置关系课件-2025届高三数学一轮复习 (1),共60页。PPT课件主要包含了落实主干知识,k1·k2=-1,k1≠k2,x-2y+11=0,探究核心题型,所以两条直线垂直,或-2,课时精练,故a+b+c=-4,x-2y+4=0等内容,欢迎下载使用。
    1.能根据斜率判定两条直线平行或垂直.2.能用解方程组的方法求两条直线的交点坐标.3.掌握平面上两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.
    第一部分 落实主干知识
    第二部分 探究核心题型
    1.两条直线的位置关系直线l1:y=k1x+b1,l2:y=k2x+b2,l3:A1x+B1y+C1=0,l4:A2x+B2y+C2=0(其中l1与l3是同一条直线,l2与l4是同一条直线)的位置关系如下表:
    k1=k2且b1≠b2
    A1B2-A2B1=0,且A1C2-A2C1≠0(或B1C2-B2C1≠0)
    A1A2+B1B2=0
    A1B2-A2B1≠0
    2.三种距离公式(1)两点间的距离公式①条件:点P1(x1,y1),P2(x2,y2).②结论:|P1P2|= .③特例:点P(x,y)到原点O(0,0)的距离|OP|= .
    (2)点到直线的距离点P(x0,y0)到直线l:Ax+By+C=0的距离d= .(3)两条平行直线间的距离两条平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0间的距离d= .
    六种常用对称关系(1)点(x,y)关于原点(0,0)的对称点为(-x,-y).(2)点(x,y)关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y).(3)点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x).(4)点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为(x,2b-y).
    (5)点(x,y)关于点(a,b)的对称点为(2a-x,2b-y).(6)点(x,y)关于直线x+y=k的对称点为(k-y,k-x),关于直线x-y=k的对称点为(k+y,x-k).
    1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)当直线l1和l2斜率都存在时,一定有k1=k2⇒l1∥l2.(  )(2)若两条直线l1与l2垂直,则它们的斜率之积一定等于-1.(  )(3)直线外一点与直线上点的距离的最小值就是点到直线的距离.(  )(4)若点A,B关于直线l:y=kx+b(k≠0)对称,则直线AB的斜率等于 ,且线段AB的中点在直线l上.(  )
    2.(选择性必修第一册P102T2改编)若直线2x+my+1=0与直线3x+6y-1=0平行,则m等于A.4   B.-4   C.1   D.-1
    因为直线2x+my+1=0与直线3x+6y-1=0平行,
    3.(选择性必修第一册P79练习T1改编)两平行直线x-2y+1=0与直线2x-4y-3=0的距离为
    4.直线x-2y-3=0关于定点M(-2,1)对称的直线方程是______________.
    在直线上取点P(3,0),点P关于M(-2,1)的对称点为P′(-7,2),过点P′与原直线平行的直线方程为x-2y+11=0,即为对称后的直线方程.
    例1 (1)(2023·桂林模拟)已知直线l1:ax+(a-1)y+3=0,l2:2x+ay-1=0,若l1⊥l2,则实数a的值是A.0或-1 B.-1或1C.-1 D.1
    题型一 两条直线的平行与垂直
    由题意可知l1⊥l2,故2a+a(a-1)=0,解得a=0或a=-1,经验证,符合题意.
    (2)(2024·青岛模拟)瑞士数学家欧拉在《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上.这条直线被称为欧拉线.已知△ABC的顶点A(-3,0),B(3,0),C(3,3),若直线l:ax+(a2-3)y-9=0与△ABC的欧拉线平行,则实数a的值为A.-2 B.-1C.-1或3 D.3
    由△ABC的顶点A(-3,0),B(3,0),C(3,3)知,
    又三角形为直角三角形,
    因为ax+(a2-3)y-9=0与x+2y-3=0平行,
    判断两条直线位置关系的注意点(1)斜率不存在的特殊情况.(2)可直接利用直线方程系数间的关系得出结论.
    跟踪训练1 (1)(2023·襄阳模拟)设a,b,c分别为△ABC中角A,B,C所对边的边长,则直线xsin A+ay+c=0与bx-ysin B+sin C=0的位置关系是A.相交但不垂直 B.垂直C.平行 D.重合
    (2)已知两直线l1:(m-1)x-6y-2=0,l2:mx+y+1=0,若l1⊥l2,则m=________;若l1∥l2,则m=____.
    因为l1:(m-1)x-6y-2=0,l2:mx+y+1=0,所以,若l1⊥l2,则m(m-1)-6=0,解得m=3或m=-2,
    例2 (1)经过两直线l1:2x-y+3=0与l2:x+2y-1=0的交点,且平行于直线3x+2y+7=0的直线方程是A.2x-3y+5=0 B.2x+3y-1=0C.3x+2y-2=0 D.3x+2y+1=0
    题型二 两直线的交点与距离问题
    所以直线l1与l2的交点为(-1,1),设与直线3x+2y+7=0平行的直线为3x+2y+m=0(m≠7),所以3×(-1)+2×1+m=0,解得m=1,所以所求直线方程为3x+2y+1=0.方法二 设所求直线方程为2x-y+3+λ(x+2y-1)=0,即(λ+2)x+(2λ-1)y+3-λ=0,
    又该直线与3x+2y+7=0平行,故(λ+2)·2-3·(2λ-1)=0,
    直线系方程过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0,λ∈R,但不包括直线l2.典例 过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为A.3x-19y=0 B.19x-3y=0C.19x+3y=0 D.3x+19y=0
    设过两直线交点的直线系方程为x-3y+4+λ(2x+y+5)=0,
    (2)(2023·上饶统考)正方形ABCD的两个顶点A,B在直线x+y-4=0上,另两个顶点C,D分别在直线2x-y-1=0,4x+y-23=0上,那么正方形ABCD的边长为____________.
    设直线CD的方程为x+y+m=0,
    解得m=-8或m=-32,
    利用距离公式应注意的点(1)点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|.(2)两条平行线间的距离公式要把两条直线方程中x,y的系数化为相等.
    跟踪训练2 (1)若点(m,n)在直线l:3x+4y-13=0上,则(m-1)2+n2的最小值为A.3   B.4   C.2   D.6
    由(m-1)2+n2的几何意义为点(m,n)到点(1,0)距离的平方,得其最小值为点(1,0)到直线l:3x+4y-13=0的距离的平方,
    (2)已知两条平行直线分别过点A(6,2)和B(-3,-1),并且各自绕点A,B旋转,平行线之间的距离的最大值为________,此时两平行直线方程分别为_____________________________.
    3x+y-20=0和3x+y+10=0
    两条平行直线分别过点A(6,2),B(-3,-1),并且各自绕点A,B旋转,当AB与两平行直线垂直时,两平行线之间的距离最大,
    故这两条平行直线的斜率为-3,则两平行直线方程分别为y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0.
    命题点1 点(或直线)关于点对称例3 直线3x-2y=0关于点 对称的直线方程为A.2x-3y=0 B.3x-2y-2=0C.x-y=0 D.2x-3y-2=0
    所以所求直线方程为3x-2y-2=0.
    方法二 在直线3x-2y=0上任取两点O(0,0),M(2,3),
    命题点2 点关于直线对称
    设点A(1,1)关于直线x+y+1=0的对称点为A′(x0,y0),
    所以对称点为A′(-2,-2),
    命题点3 直线关于直线的对称问题例5 两直线方程为l1:3x-2y-6=0,l2:x-y-2=0,则l1关于l2对称的直线方程为A.3x-2y-4=0 B.2x+3y-6=0C.2x-3y-4=0 D.3x-2y-6=0
    设所求直线上任意一点M(x,y),M关于直线x-y-2=0的对称点为M′(x1,y1),
    ∵点M′在直线3x-2y-6=0上,∴将①式代入,得3(y+2)-2(x-2)-6=0,化简得2x-3y-4=0,即为l1关于l2对称的直线方程.
    对称问题的求解策略(1)解决对称问题的思路是利用待定系数法将几何关系转化为代数关系求解.(2)中心对称问题可以利用中点坐标公式解题,两点轴对称问题可以利用垂直和中点两个条件列方程组解题.
    跟踪训练3 已知直线l:2x-3y+1=0,点A(-1,-2).求:(1)点A关于直线l的对称点A′的坐标;
    (2)直线m:3x-2y-6=0关于直线l对称的直线m′的方程;
    在直线m上取一点,如M(2,0),则M(2,0)关于直线l的对称点M′必在直线m′上.设对称点为M′(a,b),
    设直线m与直线l的交点为N,
    又m′经过点N(4,3),所以直线m′的方程为9x-46y+102=0.
    (3)直线l关于点A的对称直线l′的方程.
    方法一 在l:2x-3y+1=0上任取两点,如P(1,1),Q(4,3),则P,Q关于点A(-1,-2)的对称点P′,Q′均在直线l′上,易得P′(-3,-5),Q′(-6,-7),所以l′的方程为2x-3y-9=0.方法二 因为l∥l′,所以设l′的方程为2x-3y+C=0(C≠1).
    因为点A(-1,-2)到两直线l,l′的距离相等,所以由点到直线的距离公式,
    所以l′的方程为2x-3y-9=0.
    一、单项选择题1.已知直线l1经过点A(2,a-1),B(a,4),且与直线l2:2x+y-3=0平行,则a等于A.-2   B.2   C.-1   D.1
    2.若直线ax-4y+2=0与直线2x+5y+c=0垂直,垂足为(1,b),则a+b+c等于A.-6   B.4   C.-10   D.-4
    因为ax-4y+2=0与直线2x+5y+c=0垂直,故2a-20=0,解得a=10,因为垂足为(1,b),
    3.四边形ABCD的四个顶点是A(3,0),B(0,4),C(4,7),D(11,6),则四边形ABCD为A.矩形 B.菱形C.等腰梯形 D.直角梯形
    ∵kBC=kAD,kAB≠kCD,∴BC∥AD,AB与CD不平行,∴四边形ABCD为梯形,又∵kAD·kAB=-1,∴AD⊥AB,∴四边形ABCD为直角梯形.
    4.在平面直角坐标系中,某菱形的一组对边所在的直线方程分别为x-2y+1=0和x-2y+3=0,另一组对边所在的直线方程分别为3x+4y+c1=0和3x+4y+c2=0,则|c1-c2|等于
    因为菱形四条边都相等,所以每条边上的高也相等,且菱形对边平行,
    6.使三条直线4x+y-4=0,mx+y=0,2x-3my-4=0不能围成三角形的实数m的值最多有A.3个   B.4个   C.5个   D.6个
    要使三条直线不能围成三角形,存在两条直线平行或三条直线交于一点,若4x+y-4=0,mx+y=0平行,
    若mx+y=0,2x-3my-4=0平行,
    若4x+y-4=0,2x-3my-4=0平行,
    二、多项选择题7.已知直线l过点P(1,2),且点A(2,3),B(4,-5)到直线l的距离相等,则l的方程可能是A.4x+y-6=0 B.x+4y-6=0C.3x+2y-7=0 D.2x+3y-7=0
    由条件可知直线l平行于直线AB或过线段AB的中点,
    所以直线l的方程是y-2=-4(x-1),即4x+y-6=0;当直线l经过线段AB的中点(3,-1)时,
    8.已知在以C(2,3)为直角顶点的等腰直角三角形ABC中,顶点A,B都在直线x-y=1上,下列判断中正确的是A.斜边AB的中点坐标是(3,2)B.|AB|=C.△ABC的面积等于4D.点C关于直线AB的对称点的坐标是(4,1)
    如图,取AB的中点为P(x,y),因为△ABC为以C为直角顶点的等腰直角三角形,所以CP⊥AB,即CP垂直于直线x-y=1,
    则AB的中点P的坐标为(3,2),故A正确;
    设点C关于直线AB的对称点为点C1,则CC1的中点为点P,即xP==3,所以 =4,所以 =-1,解得 =1,即点C关于直线AB的对称点的坐标是(4,1),故D正确.
    三、填空题9.已知直线l1:2x+y+1=0和直线l2:x+ay+3=0,若l1⊥l2,则实数a的值为______;若l1∥l2,则l1与l2之间的距离为_____.
    已知直线l1:2x+y+1=0和直线l2:x+ay+3=0,若l1⊥l2,则2+a=0,解得a=-2;
    此时直线l2:2x+y+6=0,显然两直线不重合,
    10.△ABC的顶点A(0,-2),B(3,1),C(-2,2).若AD⊥BC,垂足为点D,则点D的坐标为__________.
    又AD⊥BC,∴kAD=5,∴直线AD方程为y=5x-2,即5x-y-2=0,
    11.(2023·菏泽模拟)点A(5,2)到直线(m-1)x+(2m-1)y=m-5的距离的取值范围是__________.
    直线(m-1)x+(2m-1)y=m-5可化为(x+2y-1)m-x-y+5=0,
    所以直线过定点P(9,-4),
    当点A在直线上时,点A(5,2)到直线(m-1)x+(2m-1)y=m-5的距离的最小值为0,
    12.(2023·临沂模拟)已知光线从点A(6,1)射出,到x轴上的点B后,被x轴反射到y轴上的点C,再被y轴反射,这时反射光线恰好经过点D(4,4),则CD所在直线的方程为_____________.
    如图,由题意知点B在原点O的右侧,直线BC一定过点A(6,1)关于x轴的对称点A′(6,-1),且一定过点D(4,4)关于y轴的对称点D′(-4,4),
    令x=0,则y=2,所以C点坐标为(0,2),
    四、解答题13.(1)已知点A(a,6)到直线3x-4y=2的距离d=4,求a的值;
    (2)在直线x+3y=0上求一点P,使它到原点O的距离与到直线x+3y-2=0的距离相等.
    设点P(-3b,b),
    14.已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x-y-5=0,∠B的平分线BN所在直线方程为x-2y-5=0.求:(1)顶点B的坐标;
    设点B(x0,y0),由AB中点在2x-y-5=0上,
    即2x0-y0-1=0,又x0-2y0-5=0,
    (2)直线BC的方程.
    设点A关于x-2y-5=0的对称点为A′(x′,y′),
    即6x-17y-45=0.
    15.(2023·南通统考)如图,已知△ABC为等腰直角三角形,其中∠BAC=90°,且AB=2,光线从AB边上的中点P出发,经BC,CA反射后又回到点P(反射点分别为Q,R),则光线经过的路径总长|PQ|+|QR|+|RP|=______.
    以A为坐标原点,AB,AC分别为x轴,y轴建立平面直角坐标系(图略),因为△ABC为等腰直角三角形,其中∠BAC=90°,且AB=2,则lBC:x+y-2=0,点P(1,0),所以点P关于y轴的对称点为P1(-1,0),设点P关于直线lBC:x+y-2=0的对称点为P2(x0,y0),
    解得x0=2,y0=1,即P2(2,1),
    16.(2023·长春东北师大附中模拟)已知△ABC的顶点C(5,6),边BC上的中线AD所在直线方程为x+4y-16=0,边AC上的高BE所在直线方程为5x+2y-15=0,则△ABC的面积为________.
    依题意,AC⊥BE,设直线AC的方程为2x-5y+m=0,于是2×5-5×6+m=0,解得m=20,即直线AC:2x-5y+20=0,

    相关课件

    新高考数学一轮复习讲练课件8.2 两条直线的位置关系(含解析):

    这是一份新高考数学一轮复习讲练课件8.2 两条直线的位置关系(含解析),共35页。

    新高考数学一轮复习课件 第8章 §8.2 两条直线的位置关系:

    这是一份新高考数学一轮复习课件 第8章 §8.2 两条直线的位置关系,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练等内容,欢迎下载使用。

    (新高考)高考数学一轮考点复习8.2《两条直线的位置关系》课件 (含解析):

    这是一份(新高考)高考数学一轮考点复习8.2《两条直线的位置关系》课件 (含解析)

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map