|试卷下载
终身会员
搜索
    上传资料 赚现金
    数学:江苏省南京市九校联合体2022-2023学年高一下学期期末联考试题(解析版)
    立即下载
    加入资料篮
    数学:江苏省南京市九校联合体2022-2023学年高一下学期期末联考试题(解析版)01
    数学:江苏省南京市九校联合体2022-2023学年高一下学期期末联考试题(解析版)02
    数学:江苏省南京市九校联合体2022-2023学年高一下学期期末联考试题(解析版)03
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学:江苏省南京市九校联合体2022-2023学年高一下学期期末联考试题(解析版)

    展开
    这是一份数学:江苏省南京市九校联合体2022-2023学年高一下学期期末联考试题(解析版),共14页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 的值为( )
    A. 1B. -1C. D.
    【答案】B
    【解析】由,得.
    故选:B.
    2. 数据0,1,2,3,4,5,6,7,8,9的60百分位数为( )
    A. 6B. 6.5C. 7D. 5.5
    【答案】D
    【解析】由题设,,故60百分位数为.
    故选:D.
    3. 向量与不共线,,,且与共线,则k,l应满足( )
    A. B.
    C. D.
    【答案】D
    【解析】由与共线,故,即,
    故,所以
    故选:D.
    4. 一个圆锥的侧面展开图恰好是一个半径为1的半圆,则该圆锥的表面积为( )
    A. B. C. D.
    【答案】A
    【解析】依题意,设圆锥底面半径为,高为,母线长为,则,
    底面周长为,则,所以,
    所以圆锥的表面积为.
    故选:A.
    5. 已知向量,,若,则( )
    A. B. C. D. 3
    【答案】C
    【解析】因为,所以,易知,所以,
    所以.
    故选:C.
    6. 从长度为的5条线段中任取3条,则这三条线段能构成一个三角形的概率为( )
    A. B. C. D.
    【答案】B
    【解析】从长度为的5条线段中任取3条,共有种取法,
    而取出的三条线段能构成一个三角形的情况有和以及,共3种,
    故这三条线段能构成一个三角形的概率为.
    故选:B.
    7. 在中,下列命题正确的个数是( )
    ①;②;③若,则为等腰三角形;④,则为锐角三角形.
    A. 1B. 2C. 3D. 4
    【答案】B
    【解析】①,所以错误;
    ②,所以正确;
    ③若,则,所以为等腰三角形,
    所以正确;
    ④,则是锐角,
    但是不一定为锐角三角形,所以错误.
    故选:B.
    8. 已知锐角,角A,B,C所对的边分别为a,b,c,若,,则a的取值范围是( )
    A. B. C. D.
    【答案】D
    【解析】∵,∴由正弦定理可得,
    ∵为锐角三角形,∴可得,即,
    解得.
    故选:D.
    二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
    9. 设复数,则下列结论正确的是( )
    A. z的共轭复数为B. z的虚部为1
    C. z在复平面内对应的点位于第二象限D.
    【答案】BCD
    【解析】由题得,复数,故z的共轭复数为,则A错误;
    z的虚部为1,故B正确;
    z在复平面内对应的点为,位于第二象限,故C正确;
    ,故D正确.
    故选:BCD.
    10. 下列说法中错误的是( )
    A. 已知,且与的夹角为锐角,则实数
    B. 向量,不能作为平面内所有向量的一组基底
    C. 若,则存在唯一实数,使得
    D. 非零向量和满足,则 与的夹角为
    【答案】ACD
    【解析】A:因为,所以,
    又因为与的夹角为锐角,所以,即且,
    解得且,故错误;
    B:因为向量,,所以,即共线,
    所以不能作为平面内所有向量的一组基底,故正确;
    C:当时,满足,则存在无数个实数,使得 ,故错误;
    D:因为非零向量和满足,则,即,
    则,,
    所以,因为,则,
    故错误.
    故选:ACD.
    11. 抛掷两枚质地均匀的骰子,设事件“第一枚出现奇数点”,事件“第二枚出现偶数点”,事件“两枚骰子出现点数和为8”,事件“两枚骰子出现点数和为9”,则( )
    A. 与互斥B. 与互斥C. 与独立D. 与独立
    【答案】BC
    【解析】对于A,记表示事件“第一枚点数为,第二枚点数为”,
    则事件包含事件,事件也包含事件,所以,故与不互斥,
    故A错误;
    对于B,事件包含的基本事件有共5件,
    事件包含的基本事件有共4件,故,
    即与互斥,故B正确;
    对于C,总的基本事件有件,事件的基本事件有件,
    故,由选项B知,
    而事件包含的基本事件有共2件,故,
    所以,故与独立,故C正确;
    对于D,事件的基本事件有件,故,由选项B知,
    而事件包含的基本事件有共3件,故,
    所以,故与不独立,故D错误.
    故选:BC.
    12. 在中,角A,B,C的对边分别为a,b,c,已知,下列说法正确的是( )
    A. 若有两解
    B. 若有两解
    C. 若为锐角三角形,则b的取值范围是
    D. 若为钝角三角形,则b取值范围是
    【答案】AC
    【解析】A选项,∵,∴有两解,故A正确;
    B选项,∵,∴有一解,故B错误;
    C选项,∵为锐角三角形,∴,即,故C正确;
    D选项,∵为钝角三角形,∴或,
    即或,故D错误.
    故选:AC.
    三、填空题:本题共4小题,每小题5分.
    13. 设有两组数据:与,它们之间存在关系式:(,其中非零常数),若这两组数据的方差分别为和,则和之间的关系是__________.
    【答案】
    【解析】两组数据:,与,,它们之间存在关系式:,
    即第二组数据是第一组数据的倍还要整体加上,
    在一列数字上同时加上一个数字方差不变,
    而同时乘以一个数字方差要乘以这个数字的平方,
    和之间的关系是.
    故答案为:.
    14. 边长为的三角形的最大角与最小角之和为______.
    【答案】120°
    【解析】根据三角形角边关系可得,最大角与最小角所对的边的长分别为8与5,
    设长为7的边所对的角为θ,则最大角与最小角的和是180°-θ,
    有余弦定理可得csθ==,易得θ=60°,
    则最大角与最小角的和是180°-θ=120°.
    故答案为:120°.
    15. 已知向量,,若在方向上的投影向量为,则的值为____.
    【答案】
    【解析】,,,,
    在方向上的投影向量为,
    在方向上的投影向量为,,.
    故答案为:.
    16. 如图,圆形纸片的圆心为,半径为,该纸片上的正方形的中心为为圆上的点,,,,分别是以为底边的等腰三角形.沿虚线剪开后,分别以为折痕折起,,,使得重合,得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为__________.
    【答案】
    【解析】如图:
    连接交与点,设正方形边长为,,则,,
    则正方形面积为:,四棱锥的侧面积为:,
    由题意得,即,解得,画出折叠后的立体图形,如图:
    设重合点为,该四棱锥为正四棱锥,球心应在的连线上,设为,
    设外接球半径为,则,,,,
    ,由勾股定理得,即,解得,
    外接球表面积为:.
    故答案为:.
    四、解答题:本题共6小题,其中第17题10分,其余各题为12分,共70分.解答应写出文字说明、证明过程或演算步骤.
    17. 已知是虚数单位,设.
    (1)求证:1+ω+ω2=0;
    (2)计算:(1+ω-ω2)(1-ω+ω2).
    解:(1)证明:∵,


    (2)由1+ω+ω2=0知,(ω-1)(1+ω+ω2)=0,
    ∴ω3-1=0,∴ω3=1,
    ∴(1+ω-ω2)(1-ω+ω2)=(-2ω2)(-2ω)=4ω3=4.
    18. 已知,,,是第三象限角.
    (1)求的值;
    (2)求的值.
    解:(1)∵,,∴,
    ∴,∴.
    (2)∵,是第三象限角,∴,
    故.
    19. 为测量地形不规则的一个区域的径长,采用间接测量的方法,如图,阴影部分为不规则地形,利用激光仪器和反光规律得到,为钝角,,,.
    (1)求的值;
    (2)若测得,求待测径长.
    解:(1)在中,由正弦定理可得:,
    则,因为,因为为钝角,
    所以,所以.
    (2)在,由余弦定理可得:,
    解得:或(舍去),
    因为,所以,
    在,,
    由余弦定理可得:,
    解得:,
    ,,,,

    ,由余弦定理可得:

    故.
    20. 社会的进步与发展,关键在于人才,引进高素质人才对社会的发展具有重大作用.某市进行人才引进,需要进行笔试和面试,一共有名应聘者参加笔试,他们的笔试成绩都在内,将笔试成绩按照、、、分组,得到如图所示频率分布直方图.
    (1)求频率分布直方图中的值;
    (2)求全体应聘者笔试成绩的众数和平均数(每组数据以区间中点值为代表);
    (3)若计划面试人,请估计参加面试的最低分数线.
    解:(1)由题意有,解得.
    (2)应聘者笔试成绩的众数为,
    应聘者笔试成绩的平均数为

    (3),所以,面试成绩的最低分为百分位数,
    前两个矩形面积之和为,前三个矩形的面积之和为,
    设百分位数为,则,解得,
    因此,若计划面试人,估计参加面试的最低分数线为.
    21. 如图,三棱锥中,为等边三角形,且面面,.
    (1)求证:;
    (2)当与平面BCD所成角为45°时,求二面角的余弦值.
    解:(1)在三棱锥中,平面平面,平面平面,
    而,平面,因此有平面,又有平面,
    所以.
    (2)取BC中点F,连接AF,DF,如图,
    因为等边三角形,则,而平面平面,
    平面平面,
    平面,于是得平面,是与平面BCD所成角,
    即,
    令,则,因,即有,由(1)知,,
    则有,
    过C作交AD于O,在平面内过O作交BD于E,连CE,
    从而得是二面角的平面角,
    中,,,
    中,由余弦定理得,
    ,,显然E是斜边中点,
    则,
    中,由余弦定理得,
    所以二面角的余弦值.
    22. 设是边长为1的正三角形,点四等分线段(如图所示).
    (1)求的值;
    (2)为线段上一点,若,求实数的值;
    (3)为边上一动点,当取最小值时,求的值.
    解:(1)原式,
    在中,由余弦定理,得,
    所以.
    (2)易知,即,即,
    因为为线段上一点,
    设,
    所以,解得,所以.
    (3)①当在线段上时,;
    ②当在线段上时,;要使最小,则必在线段上,
    设,则

    当时,即当为时,最小,
    则由(1)可知,
    则由余弦定理得.
    相关试卷

    江苏省南京市六校联合体2022-2023学年高一下学期期末联考数学试题(学生版+解析): 这是一份江苏省南京市六校联合体2022-2023学年高一下学期期末联考数学试题(学生版+解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省南京市九校联合体2022-2023学年高一下学期期末联考数学试题(学生版+解析): 这是一份江苏省南京市九校联合体2022-2023学年高一下学期期末联考数学试题(学生版+解析),共23页。试卷主要包含了本试卷共分8页,5C, 已知向量,,若,则, 在中,下列命题正确的个数是, 设复数,则下列结论正确的是, 下列说法中错误的是, 设有两组数据等内容,欢迎下载使用。

    2022-2023学年江苏省南京市九校联合体高一(下)期末数学试卷(含解析): 这是一份2022-2023学年江苏省南京市九校联合体高一(下)期末数学试卷(含解析),共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map