押题20 第1-6、9、12题 立体几何(五大题型)(原卷版)-冲刺2024年高考数学考点押题模拟预测卷(新高考专用)
展开
这是一份押题20 第1-6、9、12题 立体几何(五大题型)(原卷版)-冲刺2024年高考数学考点押题模拟预测卷(新高考专用),共10页。试卷主要包含了单选题,多选题,填空题等内容,欢迎下载使用。
一、单选题
1.(2022·全国·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )
A.B.C.D.
2.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为的球,其上点A的纬度是指与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),则S占地球表面积的百分比约为( )
A.26%B.34%C.42%D.50%
3.(2021·全国·高考真题)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )
A.B.C.D.
二、多选题
4.(2023·全国·高考真题)已知圆锥的顶点为P,底面圆心为O,AB为底面直径,,,点C在底面圆周上,且二面角为45°,则( ).
A.该圆锥的体积为B.该圆锥的侧面积为
C.D.的面积为
5.(2022·全国·高考真题)已知正方体,则( )
A.直线与所成的角为B.直线与所成的角为
C.直线与平面所成的角为D.直线与平面ABCD所成的角为
6.(2021·全国·高考真题)如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足的是( )
A.B.
C.D.
三、填空题
7.(2023·全国·高考真题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为 .
题型1:新考法—在生活实践、传统文化情景中求空间图形的表面积或体积
1.(2024·吉林延边·一模)碗是人们日常必需的饮食器皿,碗的起源可追溯到新石器时代泥质陶制的碗,其形状与当今无多大区别,即口大底小,碗口宽而碗底窄,下有碗足.如图所示的一个碗口直径为9.3cm,碗底直径为3.8cm,高4cm,它的形状可以近似看作圆台,则其侧面积约为( )
A.B.C.D.
2.(2024·辽宁辽阳·一模)四羊方尊(又称四羊尊)为中国商代晚期青铜器,其盛酒部分可近似视为一个正四棱台(上、下底面的边长分别为,高为),则四羊方尊的容积约为( )
A.B.C.D.
3.(2024·北京东城·一模)《天工开物》是我国明代科学家宋应星所著的一部综合性科学技术著作,书中记载了一种制造瓦片的方法.某校高一年级计划实践这种方法,为同学们准备了制瓦用的粘土和圆柱形的木质圆桶,圆桶底面外圆的直径为,高为.首先,在圆桶的外侧面均匀包上一层厚度为的粘土,然后,沿圆桶母线方向将粘土层分割成四等份(如图),等粘土干后,即可得到大小相同的四片瓦.每位同学制作四片瓦,全年级共500人,需要准备的粘土量(不计损耗)与下列哪个数字最接近.(参考数据:)( )
A.B.C.D.
4.(2024·甘肃白银·三模)如图,这是一件西周晚期的青铜器,其盛酒的部分可近似视为一个圆台(设上、下底面的半径分别为厘米,厘米,高为厘米),则该青铜器的容积约为(取)( )
A.立方厘米B.立方厘米
C.立方厘米D.立方厘米
5.(2024·陕西安康·模拟预测)随着古代瓷器工艺的高速发展,在著名的宋代五大名窑之后,又增加了三种瓷器,与五大名窑并称为中国八大名瓷,其中最受欢迎的是景德镇窑.如图,景德镇产的青花玲珑瓷(无盖)的形状可视为一个球被两个平行平面所截后剩下的部分,其中球面被平面所截的部分均可视为球冠(截得的圆面是底,垂直于圆面的直径被截得的部分是高,其面积公式为,其中为球的半径,为球冠的高).已知瓷器的高为,在高为处有最大直径(外径)为,则该瓷器的外表面积约为(取3.14) ( )
A.B.C.D.
6.(2024·陕西宝鸡·模拟预测)2023年3月11日,“探索一号”科考船搭载着“奋斗者”号载人潜水器圆满完成国际首次环大洋洲载人深潜科考任务,顺利返回三亚.本次航行有两个突出的成就,一是到达了东南印度洋的蒂阿曼蒂那深渊,二是到达了瓦莱比—热恩斯深渊,并且在这两个海底深渊都进行了勘探和采集.如图1是“奋斗者”号模型图,其球舱可以抽象为圆锥和圆柱的组合体,其轴截面如图2所示,则该模型球舱体积为( ).
A.B.C.D.
7.(2024·海南·模拟预测)当飞机超音速飞行时,声波会形成一个以飞机前端为顶点,飞机的飞行方向为轴的圆锥(如图),称为“马赫锥”.马赫锥的轴截面顶角与飞机的速度、音速满足关系式.若一架飞机以2倍音速沿直线飞行,则该飞机形成的马赫锥在距离顶点处的截面圆面积为( )
A.B.C.D.
8.(2024·四川成都·模拟预测)球面被平面所截得的一部分叫做球冠(如图).球冠是曲面,是球面的一部分.截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.阿基米德曾在著作《论球与圆柱》中记录了一个被后人称作“Archimedes’Hat-BxTherem”的定理:球冠的表面积(如上图,这里的表面积不含底面的圆的面积).某同学制作了一个工艺品,如下图所示.该工艺品可以看成是一个球被一个棱长为4的正方体的六个面所截后剩余的部分(球心与正方体的中心重合),即一个球去掉了6个球冠后剩下的部分.若其中一个截面圆的周长为,则该工艺品的表面积为( )
A.B.C.D.
9.(2024·天津·一模)祖暅是我国南北朝时期杰出的数学家和天文学家祖冲之的儿子,他提出了一条原理:“幂势既同,则积不容异”.这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等,利用祖暅原理可以将半球的体积转化为与其同底等高的圆柱和圆锥的体积之差,图1是一种“四脚帐篷”的示意图,其中曲线和均是以2为半径的半圆,平面和平面均垂直于平面,用任意平行于帐篷底面的平面截帐篷,所得截面四边形均为正方形,模仿上述半球的体积计算方法,可以构造一个与帐篷同底等高的正四棱柱,从中挖去一个倒放的同底等高的正四棱锥(如图2),从而求得该帐篷的体积为( )
A.B.C.D.
10.(2024·陕西西安·一模)六氟化硫,化学式为,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫结构为正八面体结构,如图所示,硫原子位于正八面体的中心,6个氟原子分别位于正八面体的6个顶点,若相邻两个氟原子之间的距离为m,则该正八面体结构的内切球表面积为( )
A.B.C.D.
题型2:求空间图形的表面积或体积
11.(2024·贵州毕节·二模)已知圆锥的底面圆的面积为,侧面展开图为一个扇形,其面积为,则该圆锥的母线长为( )
A.B.C.D.
12.(2024·贵州贵阳·模拟预测)下图是一个圆台的侧面展开图,已知,且,则该圆台的体积为( )
A.B.C.D.
13.(2024·吉林·模拟预测)已知圆锥的侧面积是,且它的侧面展开图是一个半圆,则这个圆锥的内切球半径为( )
A.B.C.D.
14.(2024·辽宁抚顺·一模)在三棱锥中,,,,,则三棱锥的外接球的表面积为( )
A.B.C.D.
15.(2024·江苏南通·二模)在棱长为2的正方体中,,,分别为棱,,的中点,平面截正方体外接球所得的截面面积为( )
A.B.C.D.
二、多选题
题型3:空间位置关系的说法辨析
16.(2024·重庆·模拟预测)已知空间中的两条直线 和两个平面,则( )
A.若 ,则 没有公共点
B.若 , 则 没有公共点
C.若 , 则 可能互相平行
D.若 , 则 可能互相平行
17.(2024·湖南娄底·一模)已知是空间中三条不同的直线,是空间中两个不同的平面,下列命题不正确的是( )
A.若,则
B.若,则
C.若,则或.
D.若,则,
18.(2024·海南省直辖县级单位·模拟预测)设这两个平面,是两条不同的直线,则下列命题为真命题的是( )
A.若,则B.若,则
C.若,则D.若,则
19.(2024·广东深圳·模拟预测)已知m、n为两条不重合的直线,、为两个不重合的平面,则下列说法正确的是( )
A.若,且,则B.若,,,则
C.若,,,则D.若,,,,则
题型4:立体几何初步综合判断
20.(2024·宁夏固原·一模)在正方体中,分别为棱的中点,则( )
A.平面B.平面
C.平面D.平面平面
21.(2024·黑龙江·二模)如图,正方体的棱长为1,则下列四个命题中正确的是( )
A.两条异面直线和所成的角为
B.直线与平面所成的角等于
C.点到面的距离为
D.四面体的体积是
22.(2024·全国·模拟预测)在棱长为1的正方体中,是线段的中点,以下关于直线的结论正确的有( )
A.与平面平行B.与直线垂直
C.与直线所成角为D.与平面的距离为
23.(2024·全国·模拟预测)如图,为圆锥的顶点,为底面圆的直径,圆锥的侧面展开图为半圆,且半圆的面积为,为的中点,为弧的中点,下列说法正确的是( )
A.底面半径为1B.母线与底面所成的角为
C.D.
题型5:平面的基本性质、空间向量的应用
24.(2024·云南昆明·模拟预测)一个球与正方体的各个面相切,过球心作截面,则截面的可能图形是( )
A. B.
C. D.
三、填空题
25.(2024·辽宁·一模)已知空间中的三个点,则点到直线的距离为 .
26.(2024·山东济南·一模)在三棱柱中,,,且平面,则的值为 .
27.(2024·陕西咸阳·模拟预测)如图,为平行四边形所在平面外一点,分别为上一点,且,当平面时, .
28.(2024·辽宁抚顺·三模)在直三棱柱中,,为的中点,点满足,则异面直线所成角的余弦值为 .
29.(2024·云南红河·二模)如图,在棱长均相等的斜三棱柱中,,,若存在,使成立,则的最小值为 .
押题20 立体几何 高考模拟题型分布表
题型序号
题型内容
题号
题型1
新考法—在生活实践、传统文化情景中求空间图形的表面积或体积
1-10(单选)
题型2
求空间图形的表面积或体积
11-15(单选)
题型3
空间位置关系的说法辨析
17-20(多选)
题型4
立体几何初步综合判断
21-23(多选)
题型5
平面的基本性质、空间向量的应用
24(多选)-29(填空)
相关试卷
这是一份押题19 第1-6、9、12题 导数及其应用(四大题型)(原卷版)-冲刺2024年高考数学考点押题模拟预测卷(新高考专用),共5页。试卷主要包含了单选题,多选题,填空题等内容,欢迎下载使用。
这是一份押题06 第18题 数列(九大题型)(原卷版)-冲刺2024年高考数学考点押题模拟预测卷(新高考专用),共8页。试卷主要包含了已知是等差数列,,已知数列满足,,且,的无穷数列称为M数列,已知等比数列的前项和为.,已知数列,,已知数列中,,且,为其前项的和等内容,欢迎下载使用。
这是一份押题09 第15-17题 统计与概率(五大题型)(原卷版)-冲刺2024年高考数学考点押题模拟预测卷(新高考专用),共12页。试卷主要包含了,得到如下数据等内容,欢迎下载使用。