专题06 证明(重点+难点)(原卷版)-2023-2024学年七年级数学下学期期中期末挑战满分冲刺卷(苏科版,江苏专用)
展开
这是一份专题06 证明(重点+难点)(原卷版)-2023-2024学年七年级数学下学期期中期末挑战满分冲刺卷(苏科版,江苏专用),共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
一、单选题
1.下列语句中,属于命题的是( )
A.花儿会不会一年四季都开放B.连接、两点
C.垂线段最短吗D.对顶角不相等
2.下列命题是真命题的是( )
A.两直线平行,同旁内角相等B.三角形的外角大于任一内角
C.相等的角为对顶角D.有两个角互余的三角形是直角三角形
3.可以用来说明命题若.则是假命题的反例是( )
A.B.
C.D.
4.下列各命题的逆命题是假命题的是( )
A.两直线平行,同旁内角互补
B.若两个数,则这两个数为相反数
C.对顶角相等
D.如果,那么
5.下列正确叙述的个数是( )
①每个命题都有逆命题
②真命题的逆命题是真命题
③假命题的逆命题是真命题
④每个定理都有逆定理
⑤每个定理一定有逆命题
⑥命题“若,那么”的逆命题是假命题.
A.1B.2C.3D.4
6.下列命题中,真命题有( )个.
①两直线平行,同旁内角相等;
②若三角形三边为长为a、b、c,则a、b、c一定满足;
③不平行的两条直线被第三条直线所截,同位角一定不相等;
④三角形的三条角平分线都在三角形内部.
A.1个B.2个C.3个D.4个
7.,,,,五名学生猜测自己能否进入市中国象棋前三强.说:“如果我进入,那么也进入.”说:“如果我进入,那么也进入.”说:“如果我进入,那么也进入.”说:“如果我进入,那么也进入,”大家都没有说错,则进入前三强的三个人是( )
A.,,B.,,C.,,D.,,
8.甲和乙玩一个猜数游戏,规则如下:已知五张纸牌上分别写有2、3、4、5、6五个数字,现甲、乙两人分别从中各自随机取一张,然后根据自己手中的数推测谁手上的数更大,甲看了看自己手中的数,想了想说:我不知道谁手中的数更大;乙听了甲的判断后,思索了一下说:我也不知道谁手中的数更大。假设甲、乙所作出的推理都是正确的,那么乙手中的数是( )
A.5B.4C.3D.不能确定
二、填空题
9.把命题“等角的补角相等”改写成“如果……,那么……”的形式:
10.“偶数能被整除”的逆命题是 .
11.命题“同位角相等,两直线平行”的条件是 .
12.下列命题中,是真命题的是 .(填序号)
①对顶角相等;
②内错角相等;
③三条直线两两相交,总有三个交点;
④若,,则.
13.命题“如果m一定是有理数,那么m是整数”;则它是 命题(填“真”或“假”).
14.命题“同位角相等”的逆命题是 ;逆命题是 命题(填“真”或“假”).
15.下列命题中,①同位角相等;②三角形的高相交于三角形的内部;③三角形的一个外角大于任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加;⑤两个角的两边分别平行,则这两个角相等.真命题的有 个.
16.甲:“我没有偷”;乙:“丙是小偷”;丙:“丁是小偷”;丁:“我没有偷”.若四个人里面只有一个人说了真话,则小偷是 .
三、解答题
17.下列语句中,哪些是命题?哪些不是命题?如果是命题,判断命题的真假
(1)如果是实数,则;
(2)相等的两个角是对顶角;
(3)今天有雨吗?
18.证明:平行于同一条直线的两条直线平行.
已知:____________.
求证:____________.
证明:
19.“直角三角形的两个锐角互余”的逆命题是_________,请证明这个逆命题是真命题,
已知:_________
求证:_________
20.证明:直角三角形的两个锐角互余.(在下列方框内画出图形)
已知:
求证:
证明:
21.如图,现有以下三个条件:①,②,③.请你以其中两个作为题设,另一个作为结论组成一个真命题,写出这个真命题(写一个即可),并给予证明.
22.(1)如图,,,求证:;
(2)若把(1)中的“”与结论“”对调,所得的命题是否为真命题?试说明理由写出过程.
23.已知的两边与的两边分别垂直,即,垂足分别为点M和N,试探究:
(1)如图1,与的关系是______;
(2)如图2,写出与的关系,并说明理由;
(3)根据上述探究,请归纳概括出一个真命题.
24.某次数学竞赛中有5道选择题,每题1分,每道题在A、B、C三个选项中,只有一个是正确的.下表是甲、乙、丙、丁四位同学每道题填涂的答案和这5道题的得分:
(1)则丁同学的得分是 ;
(2)如果有一个同学得了1分,他的答案可能是 (写出一种即可)
25.观察下列算式:
算式①:
算式②:
算式③:
…
(1)按照以上三个算式的规律,请写出算式④:____________;
(2)上述算式用文字可表述为:“两个连续奇数的平方差能被8整除”.若设两个连续奇数分别为,(n为整数),请证明这个命题成立;
(3)命题:“两个连续偶数的平方差能被8整除”是____________命题(填“真”或“假”):
26.已知的两边与的两边平行,即,.
(1)如图①,若,则 ;
(2)如图②,猜想与有怎样的关系?试说明理由;
(3)如图③,猜想与有怎样的关系?试说明理由;
(4)根据以上情况,请归纳概括出一个真命题.
一、单选题
1.有下列五个命题:①过一点有且只有一条直线与已知直线平行; ②平行于同一条直线的两条直线互相平行;③过一点有且只有一条直线与已知直线垂直; ④垂直于同一条直线的两条直线互相平行;⑤三角形的一个外角等于它的两个内角的和.其中真命题的个数是( )
A.1个B.2个C.3个D.4个
二、填空题
2.金乡县某中学七年级共有四个班,每班各选5名同学组成一个代表队,这四支代表队(分别用A,B,C,D表示)进行数学知识应用竞赛,前三名将参加金乡县数学知识竞赛,甲,乙,丙三位同学预测的结果分别为:甲:C得亚军;D得季军;乙:D得冠军;A得亚军;丙:C得冠军;B得亚军.已知每人的预测都是半句正确,半句错误,则冠,亚,季,殿军分别为 .
三、解答题
3.问题提出:
如图所示,有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上.
a.每次只能移动1个金属片;
b.较大的金属片不能放在较小的金属片上面.
把个金属片从1号针移到3号针,最少移动多少次?
问题探究:为了探究规律,我们采用一般问题特殊化的方法,先从简单的情形入手,再逐次递进,最后得出一般性结论.
探究一:当时,只需把金属片从1号针移到3号针,用符号表示,共移动了1次.
探究二:当时,为了避免将较大的金属片放在较小的金属片上面,我们利用2号针作为“中间针”,移动的顺序是:
a.把第1个金属片从1号针移到2号针;
b.把第2个金属片从1号针移到3号针;
c.把第1个金属片从2号针移到3号针.
用符号表示为:,,.共移动了3次.
探究三:当时,把上面两个金属片作为一个整体,则归结为的情形,移动的顺序是:
a.把上面两个金属片从1号针移到2号针;
b.把第3个金属片从1号针移到3号针;
c.把上面两个金属片从2号针移到3号针.
其中(1)和(3)都需要借助中间针,用符号表示为:
,,,,,,.共移动了7次.
(1)探究四:请仿照前面步骤进行解答:当时,把上面3个金属片作为一个整体,移动的顺序是:___________________________________________________.
(2)探究五:根据上面的规律你可以发现当时,需要移动________次.
(3)探究六:把个金属片从1号针移到3号针,最少移动________次.
(4)探究七:如果我们把个金属片从1号针移到3号针,最少移动的次数记为,当时如果我们把个金属片从1号针移到3号针,最少移动的次数记为,那么与的关系是__________.
第一题
第二题
第三题
第四题
第五题
得分
甲
C
C
A
B
B
4
乙
C
C
B
B
C
3
丙
B
C
C
B
B
2
丁
B
C
C
B
A
相关试卷
这是一份专题05 一元一次不等式(重点+难点)(原卷版)-2023-2024学年七年级数学下学期期中期末挑战满分冲刺卷(苏科版,江苏专用),共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份专题03 整式乘法与因式分解(重点+难点)(原卷版)-2023-2024学年七年级数学下学期期中期末挑战满分冲刺卷(苏科版,江苏专用),共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份专题01 平面图形的认识(二)(重点+难点)(原卷版)-2023-2024学年七年级数学下学期期中期末挑战满分冲刺卷(苏科版,江苏专用),共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。