年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    专题61 二次函数背景下的相似三角形问题(原卷版)

    立即下载
    加入资料篮
    专题61 二次函数背景下的相似三角形问题(原卷版)第1页
    专题61 二次函数背景下的相似三角形问题(原卷版)第2页
    专题61 二次函数背景下的相似三角形问题(原卷版)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题61 二次函数背景下的相似三角形问题(原卷版)

    展开

    这是一份专题61 二次函数背景下的相似三角形问题(原卷版),共20页。

    在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.
    【相似判定】
    判定1:三边对应成比例的两个三角形是相似三角形;
    判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;
    判定3:有两组角对应相等的三角形是相似三角形.
    以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.
    【题型分析】
    通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.
    【思路总结】
    根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!
    所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.
    然后再找:
    思路1:两相等角的两边对应成比例;
    思路2:还存在另一组角相等.
    事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.
    一、如何得到相等角?
    二、如何构造两边成比例或者得到第二组角?
    搞定这两个问题就可以了.
    例题精讲
    【例1】.如图,抛物线y=﹣x2+x+2交x轴于点A,B,交y轴于点C,点M是第一象限内抛物线上一点,过点M作MN⊥x轴于点N.若△MON与△BOC相似,求点M的横坐标.
    变式训练
    【变1-1】.如图,在平面直角坐标系内,已知直线y=x+4与x轴、y轴分别相交于点A和点C,抛物线y=x2+kx+k﹣1图象过点A和点C,抛物线与x轴的另一交点是B,
    (1)求出此抛物线的解析式、对称轴以及B点坐标;
    (2)若在y轴负半轴上存在点D,能使得以A、C、D为顶点的三角形与△ABC相似,请求出点D的坐标.
    【例2】.如图,抛物线y=x2+bx+c与x轴交于A(1,0),B两点,与y轴交于点C(0,3).
    (1)求该抛物线的表达式;
    (2)过点B作x轴的垂线,在该垂线上取一点P,使得△PBC与△ABC相似,请求出点P的坐标.
    变式训练
    【变2-1】.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.
    (1)求抛物线的解析式;
    (2)当点P在直线OD下方时,求△POD面积的最大值.
    (3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.

    1.抛物线y=﹣x2平移后的位置如图所示,点A,B坐标分别为(﹣1,0)、(3,0),设平移后的抛物线与y轴交于点C,其顶点为D.
    (1)求平移后的抛物线的解析式和点D的坐标;
    (2)∠ACB和∠ABD是否相等?请证明你的结论;
    (3)点P在平移后的抛物线的对称轴上,且△CDP与△ABC相似,求点P的坐标.
    2.如图,已知△ABC中,∠ACB=90°,以AB所在直线为x轴,过c点的直线为y轴建立平面直角坐标系.此时,A点坐标为(﹣1,0),B点坐标为(4,0)
    (1)试求点C的坐标;
    (2)若抛物线y=ax2+bx+c过△ABC的三个顶点,求抛物线的解析式;
    (3)点D(1,m)在抛物线上,过点A的直线y=﹣x﹣1交(2)中的抛物线于点E,那么在x轴上点B的左侧是否存在点P,使以P、B、D为顶点的三角形与△ABE相似?若存在,求出P点坐标;若不存在,说明理由.
    3.如图已知直线y=x+与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于D点,抛物线的顶点为M.
    (1)求抛物线的解析式;
    (2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;
    (3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD相似时,求N点的坐标.
    4.如图,已知抛物线经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.
    (1)直接写出:b= ,c= ;
    (2)过点P且与y轴平行的直线l与直线AB,AC分别交于点E,F,当四边形AECP的面积最大时,求点P的坐标;
    (3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C,P,Q为顶点的三角形与△ABC相似,若存在,直接写出点Q的坐标,若不存在,请说明理由.
    5.已知抛物线经过点A(﹣2,0),B(0,﹣4),与x轴交于另一点C,连接BC.
    (1)求抛物线的解析式;
    (2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求直线AP的表达式;
    (3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请直接写出点D的坐标;若不存在,请说明理由.
    6.如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.
    (1)求抛物线的解析式;
    (2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,直线CP与x轴交于点Q,当∠BQC=∠BCO时,求此时P点坐标;
    (3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CNM=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.
    7.如图,抛物线与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为点C,D,.
    (1)求b,c的值;
    (2)求直线CD的函数解析式;
    (3)求∠ADB的度数;
    (4)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上,当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.
    8.在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C(0,﹣2).
    (1)求抛物线的函数表达式;
    (2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,求的最大值;
    (3)如图2,连接AC,BC,过点O作直线l∥BC,点P,Q分别为直线l和抛物线上的点,试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
    9.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.
    (1)求点B的坐标和抛物线的解析式;
    (2)M为线段OA上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
    (3)将抛物线在0≤x≤3之间的部分记为图象L,将图象L在直线y=t上方部分沿直线y=t翻折,其余部分保持不动,得到一个新的函数图象,记这个函数的最大值为a,最小值为b,若a﹣b≤3,请直接写出t的取值范围.
    10.如图所示,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴相交于点C,B、C两点的坐标分别为(1,0)、(0,﹣3),直线y=kx+3k经过点A,与y轴交于点D.
    (1)求抛物线的函数表达式;
    (2)点E是抛物线上一动点(不与点C重合),连接AE,过点E作EF⊥x轴,垂足为F,若△AEF是等腰直角三角形,求点E的坐标;
    (3)在(2)的条件下,若在直线y=kx+3k上存在一点G使得△DFG与△AOC相似,求出k的值.
    11.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣x﹣1交于点C.
    (1)求抛物线解析式及对称轴;
    (2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;
    (3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.
    12.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.
    (1)求出抛物线L的解析式;
    (2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;
    (3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D,F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点,若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.
    13.设抛物线y=ax2+bx﹣2与x轴交于两个不同的点A(﹣1,0)、B(m,0),与y轴交于点C,且∠ACB=90度.
    (1)求m的值和抛物线的解析式;
    (2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标;
    (3)在(2)的条件下,△BDP的外接圆半径等于 .
    14.如图1,在平面直角坐标系中,抛物线y=x2+x﹣与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.
    (1)求点A、B、D的坐标;
    (2)求证:四边形BFCE是平行四边形;
    (3)如图2,过顶点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x轴,点M为垂足,使得△PAM与△DD1A相似(不含全等).
    ①求出一个满足以上条件的点P的横坐标;
    ②直接回答这样的点P共有几个?
    15.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).
    (1)求这条抛物线的表达式;
    (2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;
    (3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,
    ①求点M的坐标;
    ②在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.
    16.抛物线y=ax2+6x+c过A(2,3),B(4,3),C(6,﹣5)三点.
    (1)求抛物线的表达式;
    (2)如图①,抛物线上一点D在线段AC的上方,DE⊥AB,交AC于点E,若满足.求点D的坐标;
    (3)如图②,F为抛物线顶点,过A作直线l⊥AB,若点P在直线l上运动,点Q在x轴上运动,是否存在这样的点P、Q,使得△BQP与△ABF相似(P与F为对应点),若存在,直接写出P、Q的坐标及此时△BQP的面积;若不存在,请说明理由.
    17.如图,二次函数y=x2﹣3x的图象经过O(0,0),A(4,4),B(3,0)三点,以点O为位似中心,在y轴的右侧将△OAB按相似比2:1放大,得到△OA′B′,二次函数y=ax2+bx+c(a≠0)的图象经过O,A′,B′三点.
    (1)画出△OA′B′,试求二次函数y=ax2+bx+c(a≠0)的表达式;
    (2)点P(m,n)在二次函数y=x2﹣3x的图象上,m≠0,直线OP与二次函数y=ax2+bx+c(a≠0)的图象交于点Q(异于点O).
    ①求点Q的坐标(横、纵坐标均用含m的代数式表示)
    ②连接AP,若2AP>OQ,求m的取值范围;
    ③当点Q在第一象限内,过点Q作QQ′平行于x轴,与二次函数y=ax2+bx+c(a≠0)的图象交于另一点Q′,与二次函数y=x2﹣3x的图象交于点M,N(M在N的左侧),直线OQ′与二次函数y=x2﹣3x的图象交于点P′.△Q′P′M∽△QB′N,则线段NQ的长度等于 6 .
    18.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).
    (1)直接写出这两个二次函数的表达式;
    (2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;
    (3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标.
    19.如图,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=x2+bx+c经过点A,B.
    (I)求抛物线的解析式;
    (Ⅱ)M(m,0)为x轴上一个动点,过点M作直线MN垂直于x轴,与直线AB和抛物线分别交于点P、N.
    ①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
    ②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”,请直接写出使得M,P,N三点成为“共谐点”的m的值.
    20.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣4,0)、B(1,0),与y轴交于点C(0,2).
    (1)求抛物线的表达式;
    (2)将△ABC绕AB中点E旋转180°,得到△BAD.
    ①求点D的坐标;
    ②判断四边形ADBC的形状,并说明理由;
    (3)在该抛物线对称轴上是否存在点F,使△AEF与△BAD相似?若存在,求所有满足条件的F点的坐标;若不存在,请说明理由.
    21.已知抛物线y=﹣x2+3x+4交y轴于点A,交x轴于点B,C(点B在点C的右侧).过点A作垂直于y轴的直线l.在位于直线l下方的抛物线上任取一点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.
    (1)写出A,B,C三点的坐标;
    (2)若点P位于抛物线的对称轴的右侧:
    ①如果以A,P,Q三点构成的三角形与△AOC相似,求出点P的坐标;
    ②若将△APQ沿AP对折,点Q的对应点为点M.是否存在点P,使得点M落在x轴上?若存在,求出点P的坐标;若不存在,请说明理由;
    ③设AP的中点是R,其坐标是(m,n),请直接写出m和n的关系式,并写出m的取值范围.
    22.如图,抛物线y=ax2+bx+2与x轴交于A、B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.
    (1)求点A的坐标与抛物线的表达式;
    (2)连接CD,AD,设四边形OADC的面积为S.
    ①求S与m的关系式;
    ②当S最大时,求D点的坐标.
    (3)若点P是对称轴上一点,当△DPF∽△BOC时,求m的值.

    相关试卷

    中考数学二轮重难点复习讲义专题61 二次函数背景下的相似三角形问题(2份打包,原卷版+解析版):

    这是一份中考数学二轮重难点复习讲义专题61 二次函数背景下的相似三角形问题(2份打包,原卷版+解析版),文件包含中考数学二轮重难点复习讲义专题61二次函数背景下的相似三角形问题原卷版doc、中考数学二轮重难点复习讲义专题61二次函数背景下的相似三角形问题解析版doc等2份试卷配套教学资源,其中试卷共97页, 欢迎下载使用。

    专题61 二次函数背景下的相似三角形问题(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用):

    这是一份专题61 二次函数背景下的相似三角形问题(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含专题61二次函数背景下的相似三角形问题原卷版docx、专题61二次函数背景下的相似三角形问题解析版docx等2份试卷配套教学资源,其中试卷共97页, 欢迎下载使用。

    【全套】中考数学专题第13关 以二次函数与圆的问题为背景的解答题(原卷版):

    这是一份【全套】中考数学专题第13关 以二次函数与圆的问题为背景的解答题(原卷版),共12页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map