所属成套资源:【高考模拟】2024年高考数学临考题号押题(新高考通用)
押新高考第19题B 新定义压轴(解答题)(数列新定义、函数新定义、集合新定义、推理及其他新定义)
展开
这是一份押新高考第19题B 新定义压轴(解答题)(数列新定义、函数新定义、集合新定义、推理及其他新定义),文件包含押新高考第19题B新定义压轴解答题数列新定义函数新定义集合新定义推理及其他新定义原卷版docx、押新高考第19题B新定义压轴解答题数列新定义函数新定义集合新定义推理及其他新定义解析版docx等2份试卷配套教学资源,其中试卷共151页, 欢迎下载使用。
2、锻炼同学的考试心理,训练学生快速进入考试状态。高考的最佳心理状态是紧张中有乐观,压力下有自信,平静中有兴奋。
3、训练同学掌握一定的应试技巧,积累考试经验。模拟考试可以训练答题时间和速度。高考不仅是知识和水平的竞争,也是时间和速度的竞争,可以说每分每秒都是成绩。
4、帮助同学正确评估自己。高考是一种选拨性考试,目的是排序和择优,起决定作用的是自己在整体中的相对位置。因此,模拟考试以后,同学们要想法了解自己的成绩在整体中的位置。
押新高考19题B
新 定 义 压 轴(解答题)
(数列新定义、函数新定义、集合新定义、推理及其他新定义)
2024年新高考数学新结构体系下,新定义类试题更综合性的考查学生的思维能力和推理能力;以问题为抓手,创新设问方式,搭建思维平台,引导考生思考,在思维过程中领悟数学方法。
题目更加注重综合性、应用性、创新性,本题分值最高,试题容量明显增大,对学科核心素养的考查也更深入。
压轴题命题打破了试题题型、命题方式、试卷结构的固有模式,增强试题的灵活性,采取多样的形式、多角度的提问,考查学生的数学能力.
新定义题型的特点是;通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的;遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.
难度较难,可以预测2024年新高考大题压轴题命题方向将会以新定义类题型展开命题.
一、数列新定义问题
1. 考察对定义的理解。
2. 考查满足新定义的数列的简单应用,如在某些条件下,满足新定义的数列有某些新的性质,这也是在新环境下研究“旧”性质,此时需要结合新数列的新性质,探究“旧”性质.
3. 考查综合分析能力,主要是将新性质有机地应用在“旧”性质上,创造性地证明更新的性质.
遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,转化为已有的知识点是考查的重点,这类思想需要熟练掌握.
二、函数新定义问题
涉及函数新定义问题,理解新定义,找出数量关系,联想与题意有关的数学知识和方法,构造函数,转化、抽象为相应的函数问题作答.
关于新定义题的思路有:
找出新定义有几个要素,找出要素分别代表什么意思;
由已知条件,看所求的是什么问题,进行分析,转换成数学语言;
将已知条件代入新定义的要素中;
结合数学知识进行解答.
三、集合新定义问题
对于以集合为背景的新定义问题的求解策略:
紧扣新定义,首先分析新定义的特点,把心定义所叙述的问题的本质弄清楚,应用到具体的解题过程中;
用好集合的性质,解题时要善于从试题中发现可以使用的集合的性质的一些因素.
涉及有交叉集合的元素个数问题往往可采用维恩图法,基于课标要求的,对于集合问题,要熟练基本的概念,数学阅读技能、推理能力,以及数学抽象和逻辑推理能力.
认真归纳类比即可得出结论,但在推理过程中要严格按照定义的法则或相关的定理进行,同时运用转化化归思想,将陌生的问题转化为我们熟悉的问题,或将复杂的问题通过变换转化为简单的问题.
数 列 新 定 义 压 轴(解答题)
1.(2024·浙江·模拟预测)已知实数,定义数列如下:如果,,则.
(1)求和(用表示);
(2)令,证明:;
(3)若,证明:对于任意正整数,存在正整数,使得.
2.(2024·江西南昌·一模)对于各项均不为零的数列,我们定义:数列为数列的“比分数列”.已知数列满足,且的“比分数列”与的“2-比分数列”是同一个数列.
(1)若是公比为2的等比数列,求数列的前项和;
(2)若是公差为2的等差数列,求.
3.(2024·全国·模拟预测)给定数列,称为的差数列(或一阶差数列),称数列的差数列为的二阶差数列……
(1)求的二阶差数列;
(2)用含的式子表示的阶差数列,并求其前项和.
4.(2024·浙江温州·二模)数列满足:是等比数列,,且.
(1)求;
(2)求集合中所有元素的和;
(3)对数列,若存在互不相等的正整数,使得也是数列中的项,则称数列是“和稳定数列”.试分别判断数列是否是“和稳定数列”.若是,求出所有的值;若不是,说明理由.
5.(23-24高三上·湖北武汉·期末)若数列满足:存在等比数列,使得集合元素个数不大于,则称数列具有性质.如数列,存在等比数列,使得集合,则数列具有性质.若数列满足,,记数列的前项和为.证明:
(1)数列为等比数列;
(2)数列具有性质.
6.(2024·安徽池州·模拟预测)定义:若对恒成立,则称数列为“上凸数列”.
(1)若,判断是否为“上凸数列”,如果是,给出证明;如果不是,请说明理由.
(2)若为“上凸数列”,则当时,.
(ⅰ)若数列为的前项和,证明:;
(ⅱ)对于任意正整数序列(为常数且),若恒成立,求的最小值.
7.(2024·福建泉州·模拟预测)表示正整数a,b的最大公约数,若,且,,则将k的最大值记为,例如:,.
(1)求,,;
(2)已知时,.
(i)求;
(ii)设,数列的前n项和为,证明:.
8.(2024·全国·二模)已知由个数构成的有序数组,如果恒成立,则称有序数组为“非严格差增数组”.
(1)设有序数组,试判断是否为“非严格差增数组”?并说明理由;
(2)若有序数组为“非严格差增数组”,求实数的取值范围.
9.(2024·河南开封·二模)在密码学领域,欧拉函数是非常重要的,其中最著名的应用就是在RSA加密算法中的应用.设p,q是两个正整数,若p,q的最大公约数是1,则称p,q互素.对于任意正整数n,欧拉函数是不超过n且与n互素的正整数的个数,记为.
(1)试求,,,的值;
(2)设n是一个正整数,p,q是两个不同的素数.试求,与φ(p)和φ(q)的关系;
(3)RSA算法是一种非对称加密算法,它使用了两个不同的密钥:公钥和私钥.具体而言:
①准备两个不同的、足够大的素数p,q;
②计算,欧拉函数;
③求正整数k,使得kq除以的余数是1;
④其中称为公钥,称为私钥.
已知计算机工程师在某RSA加密算法中公布的公钥是.若满足题意的正整数k从小到大排列得到一列数记为数列,数列满足,求数列的前n项和.
10.(23-24高三下·海南省直辖县级单位·开学考试)由个数排列成行列的数表称为行列的矩阵,简称矩阵,也称为阶方阵,记作:其中表示矩阵中第行第列的数.已知三个阶方阵分别为,,其中分别表示中第行第列的数.若,则称是生成的线性矩阵.
(1)已知,若是生成的线性矩阵,且,求;
(2)已知,矩阵,矩阵是生成的线性矩阵,且.
(i)求;
(ii)已知数列满足,数列满足,数列的前项和记为,是否存在正整数,使成立?若存在,求出所有的正整数对;若不存在,请说明理由.
11.(2024·福建厦门·二模)若,都存在唯一的实数,使得,则称函数存在“源数列”.已知.
(1)证明:存在源数列;
(2)(ⅰ)若恒成立,求的取值范围;
(ⅱ)记的源数列为,证明:前项和.
12.(2024·山东泰安·一模)已知各项均不为0的递增数列的前项和为,且(,且).
(1)求数列的前项和;
(2)定义首项为2且公比大于1的等比数列为“-数列”.证明:
①对任意且,存在“-数列”,使得成立;
②当且时,不存在“-数列”,使得对任意正整数成立.
13.(2024·河南信阳·一模)定义:已知数列满足.
(1)若,,求,的值;
(2)若,,使得恒成立.探究:是否存在正整数p,使得,若存在,求出p的可能取值构成的集合;若不存在,请说明理由;
(3)若数列为正项数列,证明:不存在实数A,使得.
14.(2024·吉林白山·二模)已知数列的前项和为,若数列满足:①数列项数有限为;②;③,则称数列为“阶可控摇摆数列”.
(1)若等比数列为“10阶可控摇摆数列”,求的通项公式;
(2)若等差数列为“阶可控摇摆数列”,且,求数列的通项公式;
(3)已知数列为“阶可控摇摆数列”,且存在,使得,探究:数列能否为“阶可控摇摆数列”,若能,请给出证明过程;若不能,请说明理由.
15.(2024·河南·一模)在正项无穷数列中,若对任意的,都存在,使得,则称为阶等比数列.在无穷数列中,若对任意的,都存在,使得,则称为阶等差数列.
(1)若为1阶等比数列,,求的通项公式及前项和;
(2)若为阶等比数列,求证:为阶等差数列;
(3)若既是4阶等比数列,又是5阶等比数列,证明:是等比数列.
16.(2024·湖南·模拟预测)超越数得名于欧拉,它的存在是法国数学家刘维尔(Jseph Liuville)最早证明的.一个超越数不是任何一个如下形式的整系数多项式方程的根:(,,…,,).数学家证明了自然对数的底数e与圆周率是超越数.回答下列问题:
已知函数()只有一个正零点.
(1)求数列的通项公式;
(2)(ⅰ)构造整系数方程,证明:若,则为有理数当且仅当.
(ⅱ)数列中是否存在不同的三项构成等比数列?若存在,求出这三项的值;否则说明理由.
17.(2024·湖南·一模)已知为非零常数,,若对,则称数列为数列.
(1)证明:数列是递增数列,但不是等比数列;
(2)设,若为数列,证明:;
(3)若为数列,证明:,使得.
18.(2024·河南信阳·模拟预测)若数列满足:存在等差数列,使得集合元素的个数为不大于,则称数列具有性质.
(1)已知数列满足,.求证:数列是等差数列,且数列有性质;
(2)若数列有性质,数列有性质,证明:数列有性质;
(3)记为数列的前n项和,若数列具有性质,是否存在,使得数列具有性质?说明理由.
19.(2024·广西南宁·一模)若无穷数列满足,则称数列为数列,若数列同时满足,则称数列为数列.
(1)若数列为数列,,证明:当时,数列为递增数列的充要条件是;
(2)若数列为数列,,记,且对任意的,都有,求数列的通项公式.
20.(2024·山东青岛·一模)记集合无穷数列中存在有限项不为零,,对任意,设变换,.定义运算:若,则,.
(1)若,用表示;
(2)证明:;
(3)若,,,证明:.
函 数 新 定 义 压 轴(解答题)
1.(2024·辽宁大连·一模)已知函数的定义域为区间值域为区间,若则称是的缩域函数.
(1)若是区间的缩域函数,求a的取值范围;
(2)设为正数,且若是区间的缩域函数,证明:
(i)当时,在单调递减;
(ii)
2.(2024·安徽安庆·二模)取整函数被广泛应用于数论、函数绘图和计算机领域,其定义如下:设,不超过x的最大整数称为x的整数部分,记作,函数称为取整函数.另外也称是x的整数部分,称为x的小数部分.
(1)直接写出和的值;
(2)设a,,证明:,且,并求在b的倍数中不大于a的正整数的个数;
(3)对于任意一个大于1的整数a,a能唯一写为,其中为质数,为整数,且对任意的,,i,,称该式为a的标准分解式,例如100的标准分解式为.证明:在的标准分解式中,质因数(,,)的指数.
3.(2024·全国·模拟预测)如果有且仅有两条不同的直线与函数的图象均相切,那么称这两个函数为“函数组”.
(1)判断函数与是否为“函数组”,其中为自然对数的底数,并说明理由;
(2)已知函数与为“函数组”,求实数的取值范围.
4.(2024·江苏盐城·模拟预测)根据多元微分求条件极值理论,要求二元函数在约束条件的可能极值点,首先构造出一个拉格朗日辅助函数,其中为拉格朗日系数.分别对中的部分求导,并使之为0,得到三个方程组,如下:
,解此方程组,得出解,就是二元函数在约束条件的可能极值点.的值代入到中即为极值.
补充说明:【例】求函数关于变量的导数.即:将变量当做常数,即:,下标加上,代表对自变量x进行求导.即拉格朗日乘数法方程组之中的表示分别对进行求导.
(1)求函数关于变量的导数并求当处的导数值.
(2)利用拉格朗日乘数法求:设实数满足,求的最大值.
(3)①若为实数,且,证明:.
②设,求的最小值.
5.(2024·贵州贵阳·一模)英国数学家泰勒发现了如下公式:其中为自然对数的底数,.以上公式称为泰勒公式.设,根据以上信息,并结合高中所学的数学知识,解决如下问题.
(1)证明:;
(2)设,证明:;
(3)设,若是的极小值点,求实数的取值范围.
6.(2024·湖南·二模)罗尔定理是高等代数中微积分的三大定理之一,它与导数和函数的零点有关,是由法国数学家米歇尔·罗尔于1691年提出的.它的表达如下:如果函数满足在闭区间连续,在开区间内可导,且,那么在区间内至少存在一点,使得.
(1)运用罗尔定理证明:若函数在区间连续,在区间上可导,则存在,使得.
(2)已知函数,若对于区间内任意两个不相等的实数,都有成立,求实数的取值范围.
(3)证明:当时,有.
7.(2024·湖北·一模)英国数学家泰勒发现的泰勒公式有如下特殊形式:当在处的阶导数都存在时,.注:表示的2阶导数,即为的导数,表示的阶导数,该公式也称麦克劳林公式.
(1)根据该公式估算的值,精确到小数点后两位;
(2)由该公式可得:.当时,试比较与的大小,并给出证明;
(3)设,证明:.
8.(2024·广东·一模)数值线性代数又称矩阵计算,是计算数学的一个重要分支,其主要研究对象包括向量和矩阵.对于平面向量,其模定义为.类似地,对于行列的矩阵,其模可由向量模拓展为(其中为矩阵中第行第列的数,为求和符号),记作,我们称这样的矩阵模为弗罗贝尼乌斯范数,例如对于矩阵,其矩阵模.弗罗贝尼乌斯范数在机器学习等前沿领域有重要的应用.
(1),,矩阵,求使的的最小值.
(2),,,矩阵求.
(3)矩阵,证明:,,.
9.(2024·山东·模拟预测)如图①,将个完全一样质量均匀长为的长方体条状积木,一个叠一个,从桌子边缘往外延伸,最多能伸出桌缘多远而不掉下桌面呢?这就是著名的“里拉斜塔问题”.
解决方案如下:如图②,若,则当积木与桌缘垂直且积木重心恰与桌缘齐平时,其伸出桌外部分最长为,如图③,若,欲使整体伸出桌缘最远,在保证所有积木最长棱与桌缘垂直的同时,可先将上面积木的重心与最下方的积木伸出桌外的最远端齐平,然后设最下方积木伸出桌外的长度为,将最下方积木看成一个杠杆,将桌缘看成支点,由杠杆平衡原理可知,若积木恰好不掉下桌面,则上面积木的重力乘以力臂,等于最下方积木的重力乘以力臂,得出方程,求出.所以当叠放两个积木时,伸出桌外最远为,此时将两个积木看成整体,其重心恰与桌缘齐平.如图④,使前两块积木的中心与下方的第三块积木伸出桌外的最远端齐平,便可求出时积木伸出桌外的最远距离.依此方法,可求出4个、5个直至个积木堆叠伸出桌外的最远距离.(参考数据:,为自然常数)
(1)分别求出和时,积木伸出桌外的最远距离.(用表示);
(2)证明:当时,积木伸出桌外最远超过;
(3)证明:当时,积木伸出桌外最远不超过.
10.(2024·浙江金华·模拟预测)设全集为,定义域为的函数是关于x的函数“函数组”,当n取中不同的数值时可以得到不同的函数.例如:定义域为的函数,当时,有若存在非空集合满足当且仅当时,函数在上存在零点,则称是上的“跳跃函数”.
(1)设,若函数是上的“跳跃函数”,求集合;
(2)设,若不存在集合使为上的“跳跃函数”,求所有满足条件的集合的并集;
(3)设,为上的“跳跃函数”,.已知,且对任意正整数n,均有.
(i)证明:;
(ii)求实数的最大值,使得对于任意,均有的零点.
11.(2024·浙江·二模)①在微积分中,求极限有一种重要的数学工具——洛必达法则,法则中有结论:若函数,的导函数分别为,,且,则
.
②设,k是大于1的正整数,若函数满足:对任意,均有成立,且,则称函数为区间上的k阶无穷递降函数.
结合以上两个信息,回答下列问题:
(1)试判断是否为区间上的2阶无穷递降函数;
(2)计算:;
(3)证明:,.
12.(2024·湖北·一模)我们知道通过牛顿莱布尼兹公式,可以求曲线梯形(如图1所示阴影部分)的面积,其中,.如果平面图形由两条曲线围成(如图2所示阴影部分),曲线可以表示为,曲线可以表示为,那么阴影区域的面积,其中.
(1)如图,连续函数在区间与的图形分别为直径为1的上、下半圆周,在区间与的图形分别为直径为2的下、上半圆周,设.求的值;
(2)在曲线上某一个点处作切线,便之与曲线和x轴所围成的面积为,求切线方程;
(3)正项数列是以公差为d(d为常数,)的等差数列,,两条抛物线,记它们交点的横坐标的绝对值为,两条抛物线围成的封闭图形的面积为,求证:.
13.(2024·安徽蚌埠·模拟预测)对于无穷数列,我们称(规定)为无穷数列的指数型母函数.无穷数列1,1,…,1,…的指数型母函数记为,它具有性质.
(1)证明:;
(2)记.证明:(其中i为虚数单位);
(3)以函数为指数型母函数生成数列,.其中称为伯努利数.证明:.且.
14.(2024·福建·模拟预测)对于函数,若实数满足,则称为的不动点.已知,且的不动点的集合为.以和分别表示集合中的最小元素和最大元素.
(1)若,求的元素个数及;
(2)当恰有一个元素时,的取值集合记为.
(i)求;
(ii)若,数列满足,,集合,.求证:,.
15.(2024·黑龙江吉林·二模)设定义在函数满足下列条件:
①对于,总有,且,;
②对于,若,则.
(1)求;
(2)证明:;
(3)证明:当时,.
16.(2024·安徽池州·二模)已知集合是满足下列性质的函数的全体:存在实数,对任意的,有.
(1)试问函数是否属于集合?并说明理由;
(2)若函数,求正数的取值集合;
(3)若函数,证明:.
17.(23-24高三上·云南昆明·阶段练习)悬链线的原理运用于悬索桥、架空电缆、双曲拱桥、拱坝等工程.通过适当建立坐标系,悬链线可为双曲余弦函数的图象,类比三角函数的三种性质:①平方关系:①,②和角公式:,③导数:定义双曲正弦函数.
(1)直接写出,具有的类似①、②、③的三种性质(不需要证明);
(2)若当时,恒成立,求实数a的取值范围;
(3)求的最小值.
18.(2024·湖北·二模)微积分的创立是数学发展中的里程碑,它的发展和广泛应用开创了向近代数学过渡的新时期,为研究变量和函数提供了重要的方法和手段.对于函数在区间上的图像连续不断,从几何上看,定积分便是由直线和曲线所围成的区域(称为曲边梯形)的面积,根据微积分基本定理可得,因为曲边梯形的面积小于梯形的面积,即,代入数据,进一步可以推导出不等式:.
(1)请仿照这种根据面积关系证明不等式的方法,证明:;
(2)已知函数,其中.
①证明:对任意两个不相等的正数,曲线在和处的切线均不重合;
②当时,若不等式恒成立,求实数的取值范围.
19.(2024·全国·模拟预测)“让式子丢掉次数”:伯努利不等式
伯努利不等式(Bernulli’sInequality),又称贝努利不等式,是高等数学的分析不等式中最常见的一种不等式,由瑞士数学家雅各布·伯努利提出:对实数,在时,有不等式成立;在时,有不等式成立.
(1)猜想伯努利不等式等号成立的条件;
(2)当时,对伯努利不等式进行证明;
(3)考虑对多个变量的不等式问题.已知是大于的实数(全部同号),证明
20.(2024·广西·二模)设,用表示不超过x的最大整数,则称为取整函数,取整函数是法国数学家高斯最先使用,也称高斯函数.该函数具有以下性质:
①的定义域为R,值域为Z;
②任意实数都能表示成整数部分和纯小数部分之和,即,其中为x的整数部分,为x的小数部分;
③;
④若整数a,b满足,则.
(1)解方程;
(2)已知实数r满足,求的值;
(3)证明:对于任意的正整数n,均有.
集合新定义、推理及其他新定义压轴(解答题)
1.(2024·云南昆明·一模)若非空集合A与B,存在对应关系f,使A中的每一个元素a,B中总有唯一的元素b与它对应,则称这种对应为从A到B的映射,记作f:A→B.
设集合,(,),且.设有序四元数集合且,.对于给定的集合B,定义映射f:P→Q,记为,按映射f,若(),则;若(),则.记.
(1)若,,写出Y,并求;
(2)若,,求所有的总和;
(3)对于给定的,记,求所有的总和(用含m的式子表示).
2.(2024·重庆·模拟预测)在二维空间即平面上点的坐标可用两个有序数组表示,在三维空间中点的坐标可用三个有序数组表示,一般地在维空间中点A的坐标可用n个有序数组表示,并定义n维空间中两点,间的“距离”.
(1)若,,求;
(2)设集合.元素个数为2的集合M为的子集,且满足对于任意,都存在唯一的使得,则称M为“的优集”.证明:“的优集”M存在,且M中两不同点的“距离”是7.
3.(2024·湖南衡阳·二模)莫比乌斯函数在数论中有着广泛的应用.所有大于1的正整数都可以被唯一表示为有限个质数的乘积形式:(为的质因数个数,为质数,),例如:,对应.现对任意,定义莫比乌斯函数
(1)求;
(2)若正整数互质,证明:;
(3)若且,记的所有真因数(除了1和以外的因数)依次为,证明:.
4.(2024·广东·模拟预测)设X,Y为任意集合,映射.定义:对任意,若,则,此时的为单射.
(1)试在上给出一个非单射的映射;
(2)证明:是单射的充分必要条件是:给定任意其他集合与映射,若对任意,有,则;
(3)证明:是单射的充分必要条件是:存在映射,使对任意,有.
5.(2023高三上·全国·竞赛)给定素数,定义集合.对于,,定义如下:当时;当时.对于的一个子集,定义.若集合满足且对任意有则称集合为好集合.求最大正整数,使得可以找到个互不相同的好集合,,,,满足.
6.(2024·广东·模拟预测)已知集合中含有三个元素,同时满足①;②;③为偶数,那么称集合具有性质.已知集合,对于集合的非空子集,若中存在三个互不相同的元素,使得均属于,则称集合是集合的“期待子集”.
(1)试判断集合是否具有性质,并说明理由;
(2)若集合具有性质,证明:集合是集合的“期待子集”;
(3)证明:集合具有性质的充要条件是集合是集合的“期待子集”.
7.(2024·全国·模拟预测)拓扑学是一个研究图形(或集合)整体结构和性质的一门几何学,以抽象而严谨的语言将几何与集合联系起来,富有直观和逻辑.已知平面,定义对,,其度量(距离)并称为一度量平面.设,,称平面区域为以为心,为半径的球形邻域.
(1)试用集合语言描述两个球形邻域的交集;
(2)证明:中的任意两个球形邻域的交集是若干个球形邻域的并集;
(3)一个集合称作“开集”当且仅当其是一个无边界的点集.证明:的一个子集是开集当且仅当其可被表示为若干个球形邻域的并集.
8.(2024·广东江门·一模)将2024表示成5个正整数,,,,之和,得到方程①,称五元有序数组为方程①的解,对于上述的五元有序数组,当时,若,则称是密集的一组解.
(1)方程①是否存在一组解,使得等于同一常数?若存在,请求出该常数;若不存在,请说明理由;
(2)方程①的解中共有多少组是密集的?
(3)记,问是否存在最小值?若存在,请求出的最小值;若不存在,请说明理由.
9.(2024·湖南邵阳·二模)给定整数,由元实数集合定义其随影数集.若,则称集合为一个元理想数集,并定义的理数为其中所有元素的绝对值之和.
(1)分别判断集合是不是理想数集;(结论不要求说明理由)
(2)任取一个5元理想数集,求证:;
(3)当取遍所有2024元理想数集时,求理数的最小值.
注:由个实数组成的集合叫做元实数集合,分别表示数集中的最大数与最小数.
10.(2024·安徽芜湖·二模)对称变换在对称数学中具有重要的研究意义.若一个平面图形K在m(旋转变换或反射变换)的作用下仍然与原图形重合,就称K具有对称性,并记m为K的一个对称变换.例如,正三角形R在(绕中心O作120°的旋转)的作用下仍然与R重合(如图1图2所示),所以是R的一个对称变换,考虑到变换前后R的三个顶点间的对应关系,记;又如,R在(关于对称轴所在直线的反射)的作用下仍然与R重合(如图1图3所示),所以也是R的一个对称变换,类似地,记.记正三角形R的所有对称变换构成集合S.一个非空集合G对于给定的代数运算.来说作成一个群,假如同时满足:
I.,;
II.,;
Ⅲ.,,;
Ⅳ.,,.
对于一个群G,称Ⅲ中的e为群G的单位元,称Ⅳ中的为a在群G中的逆元.一个群G的一个非空子集H叫做G的一个子群,假如H对于G的代数运算来说作成一个群.
(1)直接写出集合S(用符号语言表示S中的元素);
(2)同一个对称变换的符号语言表达形式不唯一,如.对于集合S中的元素,定义一种新运算*,规则如下:,.
①证明集合S对于给定的代数运算*来说作成一个群;
②已知H是群G的一个子群,e,分别是G,H的单位元,,,分别是a在群G,群H中的逆元.猜想e,之间的关系以及,之间的关系,并给出证明;
③写出群S的所有子群.
11.(2024·河南南阳·一模)在椭圆(双曲线)中,任意两条互相垂直的切线的交点都在同一个圆上,该圆的圆心是椭圆(双曲线)的中心,半径等于椭圆(双曲线)长半轴(实半轴)与短半轴(虚半轴)平方和(差)的算术平方根,则这个圆叫蒙日圆.已知椭圆的蒙日圆的面积为,该椭圆的上顶点和下顶点分别为,且,设过点的直线与椭圆交于两点(不与两点重合)且直线.
(1)证明:,的交点在直线上;
(2)求直线围成的三角形面积的最小值.
12.(2024·新疆乌鲁木齐·二模)在平面直角坐标系中,重新定义两点之间的“距离”为,我们把到两定点的“距离”之和为常数的点的轨迹叫“椭圆”.
(1)求“椭圆”的方程;
(2)根据“椭圆”的方程,研究“椭圆”的范围、对称性,并说明理由;
(3)设,作出“椭圆”的图形,设此“椭圆”的外接椭圆为的左顶点为,过作直线交于两点,的外心为,求证:直线与的斜率之积为定值.
13.(2024·湖南·二模)直线族是指具有某种共同性质的直线的全体,例如表示过点的直线,直线的包络曲线定义为:直线族中的每一条直线都是该曲线上某点处的切线,且该曲线上的每一点处的切线都是该直线族中的某条直线.
(1)若圆是直线族的包络曲线,求满足的关系式;
(2)若点不在直线族:的任意一条直线上,求的取值范围和直线族的包络曲线;
(3)在(2)的条件下,过曲线上两点作曲线的切线,其交点为.已知点,若三点不共线,探究是否成立?请说明理由.
14.(23-24高三下·河北·开学考试)设a,b为非负整数,m为正整数,若a和b被m除得的余数相同,则称a和b对模m同余,记为.
(1)求证:;
(2)若p是素数,n为不能被p整除的正整数,则,这个定理称之为费马小定理.应用费马小定理解决下列问题:
①证明:对于任意整数x都有;
②求方程的正整数解的个数.
15.(2024·江苏南通·二模)在平面直角坐标系xOy中,已知椭圆Γ:的离心率为,直线l与Γ相切,与圆O:相交于A,B两点.当l垂直于x轴时,.
(1)求Γ的方程;
(2)对于给定的点集M,N,若M中的每个点在N中都存在距离最小的点,且所有最小距离的最大值存在,则记此最大值为.
(ⅰ)若M,N分别为线段AB与圆O上任意一点,P为圆O上一点,当的面积最大时,求;
(ⅱ)若,均存在,记两者中的较大者为.已知,,均存在,证明:.
16.(2024·山东济南·一模)在空间直角坐标系中,任何一个平面的方程都能表示成,其中,,且为该平面的法向量.已知集合,,.
(1)设集合,记中所有点构成的图形的面积为,中所有点构成的图形的面积为,求和的值;
(2)记集合Q中所有点构成的几何体的体积为,中所有点构成的几何体的体积为,求和的值:
(3)记集合T中所有点构成的几何体为W.
①求W的体积的值;
②求W的相邻(有公共棱)两个面所成二面角的大小,并指出W的面数和棱数.
17.(2024高三上·全国·竞赛)对集合,定义其特征函数,考虑集合和正实数,定义为和式函数.设,则为闭区间列;如果集合对任意,有,则称是无交集合列,设集合.
(1)证明:L和式函数的值域为有限集合;
(2)设为闭区间列,是定义在上的函数.已知存在唯一的正整数,各项不同的非零实数,和无交集合列使得,并且,称为和式函数的典范形式.设为的典范数.
(i)设,证明:;
(ii)给定正整数,任取正实数和闭区间列,判断的典范数最大值的存在性.如果存在,给出最大值;如果不存在,说明理由.
18.(2024·河南·模拟预测)离散对数在密码学中有重要的应用.设是素数,集合,若,记为除以的余数,为除以的余数;设,两两不同,若,则称是以为底的离散对数,记为.
(1)若,求;
(2)对,记为除以的余数(当能被整除时,).证明:,其中;
(3)已知.对,令.证明:.
19.(2024·全国·模拟预测)对于非空集合,定义其在某一运算(统称乘法)“×”下的代数结构称为“群”,简记为.而判断是否为一个群,需验证以下三点:
1.(封闭性)对于规定的“×”运算,对任意,都须满足;
2.(结合律)对于规定的“×”运算,对任意,都须满足;
3.(恒等元)存在,使得对任意,;
4.(逆的存在性)对任意,都存在,使得.
记群所含的元素个数为,则群也称作“阶群”.若群的“×”运算满足交换律,即对任意,,我们称为一个阿贝尔群(或交换群).
(1)证明:所有实数在普通加法运算下构成群;
(2)记为所有模长为1的复数构成的集合,请找出一个合适的“×”运算使得在该运算下构成一个群,并说明理由;
(3)所有阶数小于等于四的群是否都是阿贝尔群?请说明理由.
20.(2024·江西九江·二模)定义两个维向量,的数量积,,记为的第k个分量(且).如三维向量,其中的第2分量.若由维向量组成的集合A满足以下三个条件:①集合中含有n个n维向量作为元素;②集合中每个元素的所有分量取0或1;③集合中任意两个元素,,满足(T为常数)且.则称A为T的完美n维向量集.
(1)求2的完美3维向量集;
(2)判断是否存在完美4维向量集,并说明理由;
(3)若存在A为T的完美n维向量集,求证:A的所有元素的第k分量和.
相关试卷
这是一份押新高考第19题B 新定义压轴(解答题)(数列新定义、函数新定义、集合新定义、推理及其他新定义)-2024年高考数学押题(新高考通用),文件包含押新高考第19题B新定义压轴解答题数列新定义函数新定义集合新定义推理及其他新定义原卷版docx、押新高考第19题B新定义压轴解答题数列新定义函数新定义集合新定义推理及其他新定义解析版docx等2份试卷配套教学资源,其中试卷共151页, 欢迎下载使用。
这是一份函数定义题--2025年高考新结构一轮复习解答题(解析版),共15页。
这是一份新定义新情景压轴解答题-2024年高考数学压轴题专项训练,文件包含压轴题型新定义新情景压轴解答题解析版pdf、压轴题型新定义新情景压轴解答题学生版pdf等2份试卷配套教学资源,其中试卷共81页, 欢迎下载使用。