所属成套资源:【高考模拟】2024年高考数学押题预测卷(多地区)
数学(九省新高考新结构卷01)-2024年高考数学押题预测卷
展开
这是一份数学(九省新高考新结构卷01)-2024年高考数学押题预测卷,文件包含数学九省新高考新结构卷01全解全析docx、数学九省新高考新结构卷01参考答案docx、数学九省新高考新结构卷01考试版A4docx、数学九省新高考新结构卷01考试版A3docx、数学九省新高考新结构卷01答题卡pdf等5份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。
2、锻炼同学的考试心理,训练学生快速进入考试状态。高考的最佳心理状态是紧张中有乐观,压力下有自信,平静中有兴奋。
3、训练同学掌握一定的应试技巧,积累考试经验。模拟考试可以训练答题时间和速度。高考不仅是知识和水平的竞争,也是时间和速度的竞争,可以说每分每秒都是成绩。
4、帮助同学正确评估自己。高考是一种选拨性考试,目的是排序和择优,起决定作用的是自己在整体中的相对位置。因此,模拟考试以后,同学们要想法了解自己的成绩在整体中的位置。
2024年高考押题预测卷01【新九省卷】
数 学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共58分)
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数,则( )
A.B.C.D.
2.为了了解学生们的身体状况,某学校决定采用分层抽样的方法,从高一、高二、高三三个年级共抽取100人进行各项指标测试.已知高三年级有500人,高二年级有700人,高一年级有800人,则高三年级抽取的人数为( )
A.30B.25C.20D.15
3.已知,,若,则( )
A.1B.C.D.
4.若,则( )
A.B.C.D.
5.双曲线的左、右焦点分别为,且的一条渐近线与直线平行,则双曲线的标准方程为( )
A.B.C.D.
6.我国元代瓷器元青花团菊花纹小盏如图所示,撇口,深弧壁,圈足微微外撇,底心有一小乳突.器身施白釉,以青花为装饰,釉质润泽,底足露胎,胎质致密.碗内口沿饰有一周回纹,内底心书有一文字,碗外壁绘有一周缠枝团菊纹,下笔流畅,纹饰洒脱.该元青花团菊花纹小盏口径8.4厘米,底径2.8厘米,高4厘米,它的形状可近似看作圆台,则其侧面积约为(单位:平方厘米)( )(附:)
A.B.C.D.
7.已知为坐标原点,直线与圆相交于,两点,则( )
A.4B.6C.8D.10
8.在同一平面上有相距14公里的两座炮台,在的正东方.某次演习时,向西偏北方向发射炮弹,则向东偏北方向发射炮弹,其中为锐角,观测回报两炮弹皆命中18公里外的同一目标,接着改向向西偏北方向发射炮弹,弹着点为18公里外的点,则炮台与弹着点的距离为( )
A.7公里B.8公里C.9公里D.10公里
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.袋子中有6个相同的球,分别标有数字1,2,3,4,5,6,从中随机取出两个球,设事件“取出的球的数字之积为奇数”,事件“取出的球的数字之积为偶数”,事件“取出的球的数字之和为偶数”,则( )
A.事件与是互斥事件B.事件与是对立事件
C.事件与是互斥事件D.事件与相互独立
10.已知函数的部分图象如图所示,则( )
A.
B.的图象过点
C.函数的图象关于直线对称
D.若函数在区间上不单调,则实数的取值范围是
11.如图,在棱长为2的正方体中,是棱BC的中点,是棱上的动点(含端点),则下列说法中正确的是( )
A.三棱锥的体积为定值
B.若是棱的中点,则过A,M,N的平面截正方体所得的截面图形的周长为
C.若是棱的中点,则四面体的外接球的表面积为
D.若CN与平面所成的角为,则
第二部分(非选择题 共92分)
三、填空题:本题共3小题,每小题5分,共15分。
12.已知集合,若,则的取值范围是 .
13.已知椭圆的一个焦点的坐标为,一条切线的方程为,则的离心率 .
14.关于的不等式恒成立,则的最小值为 .
四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步棸。
15.(本小题满分13分)为促进全民阅读,建设书香校园,某校在寒假面向全体学生发出“读书好、读好书、好读书”的号召,并开展阅读活动.开学后,学校统计了高一年级共1000名学生的假期日均阅读时间(单位:分钟),得到了如下所示的频率分布直方图,若前两个小矩形的高度分别为0.0075,0.0125,后三个小矩形的高度比为3:2:1.
(1)根据频率分布直方图,估计高一年级1000名学生假期日均阅读时间的平均值(同一组中的数据用该组区间的中点值为代表);
(2)开学后,学校从高一日均阅读时间不低于60分钟的学生中,按照分层抽样的方式,抽取6名学生作为代表分两周进行国旗下演讲,假设第一周演讲的3名学生日均阅读时间处于[80,100)的人数记为,求随机变量的分布列与数学期望.
16.(本小题满分15分)如图,在三棱柱中,与的距离为,,.
(1)证明:平面平面ABC;
(2)若点N在棱上,求直线AN与平面所成角的正弦值的最大值.
17.(本小题满分15分)已知函数.
(1)当时,求的单调区间;
(2)讨论极值点的个数.
18.(本小题满分17分)设抛物线,过焦点的直线与抛物线交于点,.当直线垂直于轴时,.
(1)求抛物线的标准方程.
(2)已知点,直线,分别与抛物线交于点,.
①求证:直线过定点;
②求与面积之和的最小值.
19.(本小题满分17分)给定整数,由元实数集合定义其相伴数集,如果,则称集合S为一个元规范数集,并定义S的范数为其中所有元素绝对值之和.
(1)判断、哪个是规范数集,并说明理由;
(2)任取一个元规范数集S,记、分别为其中最小数与最大数,求证:;
(3)当遍历所有2023元规范数集时,求范数的最小值.
注:、分别表示数集中的最小数与最大数.
相关试卷
这是一份2024年高考押题预测卷—数学(九省新高考新结构卷03)(考试版),共4页。
这是一份2024年高考押题预测卷—数学(九省新高考新结构卷03)(解析版),共13页。
这是一份2024年高考押题预测卷—数学(九省新高考新结构卷01)(考试版),共4页。