终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    重庆市2024年中考数学考前押题密卷

    立即下载
    加入资料篮
    重庆市2024年中考数学考前押题密卷第1页
    重庆市2024年中考数学考前押题密卷第2页
    重庆市2024年中考数学考前押题密卷第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆市2024年中考数学考前押题密卷

    展开

    这是一份重庆市2024年中考数学考前押题密卷,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    第Ⅰ卷的注释
    一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)(共10题;共40分)
    1. 的相反数是( )
    A . B . 4 C . D .
    ---------------------------------------------------------------------
    2. (2018·舟山) 下列几何体中,俯视图为三角形的是( )
    A . B . C . D .
    3. (2024·长沙模拟) 如图,直线 , 点在直线上,点在直线上,连接 , 过点作 , 交直线于点 . 若 , 则的度数为( )
    A . B . C . D .
    4. 如图,在平面直角坐标系中,以原点O为位似中心,将缩小为原来的 , 得到 . 若点A
    的坐标是 , 则点C的坐标是( )
    A . B . C . D .
    5. 估计的值应在( )
    A . 0与1之间 B . 1与2之间 C . 2与3之间 D . 3与4之间
    6. 端午节又称端阳节,是中华民族重要的传统节日,我国各地都有吃粽子的习俗.某超市以10元每袋的
    价格购进一批粽子,根据市场调查,售价定为每袋16元,每天可售出200袋;若售价每降低1元,则可多
    售出80袋,问此种粽子售价降低多少元时,超市每天售出此种粽子的利润可达到1440元?若设每袋粽子
    售价降低x元,则可列方程为( )
    A . B . C . D .
    7. 如图是由大小相同的“△”按照一定的规律排列组成的,第①个图中有3个“△”,第②个图中有8个
    “△”,第③个图中有15个“△”,…,依据规律,第⑥个图中“△”的个数为( )
    A . 24 B . 35 C . 36 D . 48
    8. (2024九下·中江月考) 如图,已知AB是的直径,弦 , 垂足为E , , , 则CD的长为( )
    A . B . C . D .
    9. 如图,延长矩形的边至点E , 使 , 连接 , 若 , 则的度数是( )
    A . B . C . D .
    10. 已知两个二次根式: , (),将这两个二次根式进行如下操作:
    第一次操作:将与的和记为 , 差记为;
    第二次操作:将与的和记为 , 差记为;
    第三次操作:将与的和记为 , 差记为;
    …;
    以此类推.
    下列说法:
    ①当时,;
    ②;
    ③(n为自然数).
    其中正确的个数是( )
    A . 0 B . 1 C . 2 D . 3
    二、填空题(本大题共8个小题,每小题4分,共32分,请将每小题的答案直接填在答题卡中对应的横线上)(共8题;共32分)
    11. 计算:=.
    12. 如图是反比例函数的图象,那么实数m的取值范围是 .
    ---------------------------------------------------------------------
    13. (2019八下·鄞州期末) 从一个多边形的一个顶点出发可以引5条对角线,这个多边形的边数是.
    14. 重庆园博园内桃花盛开,一片春意盎然.周末甲、乙两名同学去游园,园内有A、B、C三条不同的赏
    花路线,两名同学每人随机选择一条路线,那么他们选择相同路线的概率是 .
    15. 如图,在中, , 点D、E分别在边、上(均不与点A、B、C重合),且 ,
    若 , 则=度.
    16. 如图,在正方形中,以A为圆心,为半径画弧,再以为直径作半圆,连接 , 若正
    方形边长为4,则图中阴影部分的面积为 .
    17. 如果关于x的不等式组至少有两个整数解,且关于y的分式方程的解
    为正整数,则符合条件的所有整数m的和为 .
    18. 一个各个数位上的数字均不为0的四位正整数,若千位上的数字与个位上的数字之和是百位上的数字
    与十位上的数字之和的2倍,则称这个四位数为“逢双数”,则最大的“逢双数”为:;对于
    “逢双数”m , 任意去掉一个数位上的数字,得到四个三位数,这四个三位数的和记为 . 若“逢双
    数”m千位上的数字与个位上的数字之和为8,且能被4整除,则所有满足条件的“逢双数”m的
    最大值与最小值的差为 .
    三、解答题(本大题共8个小题,第19题8分,其余每题各10分,共78分.解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上)(共8题;共78分)
    19. 计算:
    (1) ;
    (2) .
    20. 在学习完勾股定理后,喜欢思考的小明想进一步探究直角三角形斜边的中线,他的思路是:
    在中,先作出直角边的垂直平分线,并猜测它与斜边的交点是中点,于是他把交点与点C连接,通过垂直平分线的性质以及等角对等边的代换,他发现了直角三角形斜边的中线与斜边的数量关系.
    请根据小明的思路完成以下作图与填空:
    用直尺和圆规作的垂直平分线交与点D , 垂足为点E , 连接 . (保留作图痕迹,不写作法)
    已知:在中, , 垂直平分 , 垂足为点E .
    求证: .
    证明:∵垂直平分 ,
    ∴= ▲ ,
    ∴ .
    ∵在中, ,
    ∴ , ▲ = ,
    ∴ ,
    ∴ ▲ = ,
    ∴ .
    ∴ .
    通过探究,小明发现直角三角形均有此特征,请依照题意完成下面命题:直角三角形斜边的中线 ▲ .
    21. 12月2日是“全国交通安全日”,为了解七、八年级学生对交通安全知识的掌握情况,某学校举行了交
    通安全知识竞赛活动.现从七、八年级中各随机抽取20名学生的竞赛成绩(百分制)进行整理、描述和分
    析(得分用x表示,80分及以上为优秀,共分成四组:A:x<70,B:70≤x<80,C:80≤x<90,D:90
    ≤x≤100),下面给出了部分信息:
    七年级抽取的学生竞赛成绩在C组的数量是D组数量的一半,在C组中的数据为:84,86,87,89;
    八年级抽取的学生竞赛成绩为:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.
    七、八年级抽取的学生竞赛成绩统计表
    根据以上信息,解答下列问题:
    (1) 填空:a=,b=,m=.
    (2) 该校;七、八年级共600人参加了此次竞赛活动,请你估计该校七、八年级参加此次竞赛活动成绩达到优秀的学生总数.
    (3) 根据以上数据,你认为哪一个年级参加竞赛活动的学生成绩更好?请说明理由(写出一条理由即可).
    ---------------------------------------------------------------------
    22. (2020八上·义安期末) 2019年10月17日是我国第6个扶贫日,也是第27个国际消除贫困日.为组织开展好铜陵市2019年扶贫日系列活动,促进我市贫困地区农产品销售,增加贫困群众收入,加快脱贫攻坚步伐.我市决定将一批铜陵生姜送往外地销售.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱生姜,且甲种货车装运1000箱生姜所用车辆与乙种货车装运800箱生姜所用车辆相等.
    (1) 求甲、乙两种货车每辆车可装多少箱生姜?
    (2) 如果这批生姜有1520箱,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了40箱,其它装满,求甲、乙两种货车各有多少辆?
    23. 三月是草长莺飞的好时节,某高校组织学生春游,出发点位于点C处,集合点位于点E处,现有两条
    路线可以选择:①C→E , ②C→A→D→E . 已知B位于C的正西方,A位于B的北偏西30°方向米
    处,且位于C的北偏西方向处.D位于A的正西方向米处,E位于C的西南方向,且正好位
    于D的正南方向.(参考数据: , , , )
    (1) 求A与C之间的距离(结果保留整数);
    (2) 已知路线①的步行速度为40米/分钟,路线②的步行速度为75米/分钟,请计算说明:走哪条线路用时更短?(结果保留一位小数)
    24. 如图,矩形中, , , 点E为边的中点,点F为边上的三等分点(),
    动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设
    点P运动时间为x秒,的面积为y .
    (1) 请直接写出y关于x的函数解析式,并注明自变量x的取值范围;
    (2) 在平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;
    (3) 结合函数图象,直接写出当直线与该函数图象有两个交点时,b的取值范围.
    25. 如图1,已知抛物线(a , b为常数,)经过点 , , 与y轴交于
    点C .
    (1) 求该抛物线的解析式;
    (2) 如图2,若点P为第二象限内抛物线上一点,连接、、、 , 当与的面积和最大时,求点P的坐标及此时与的面积和;
    (3) 如图3,点Q是抛物线上一点,连接 , 当时,求点Q的坐标.
    26. 在中, , 是边上的高,点E是线段上一点,点F是直线上的点,
    连接、 , 直线交直线于点G .

    (1) 如图1,点F在线段延长线上,若 , , 证明: .
    (2) 如图2,点F在线段上,连接并延长至点H , 使得 , 连接 , 若 . 证明: .
    (3) 如图3,点F在线段延长线上,若 , , 点Q为上一点, , 连接 , 点I在的下方且 , , 连接 . 点M为的中点,连接 , 点N为线段上的动点,连接 , 将沿直线翻折得到 , 连接 , 点P为的中点,连接 , . 当最大时,直接写出的面积.
    第Ⅱ卷
    第Ⅱ卷的注释
    下载试卷 全部加入试题篮
    平行组卷 答题卡下载 在线测试 收藏试卷 试卷分享 发布测评
    查看全部试题答案解析
    详情
    试卷分析
    (总分:150)
    总体分析
    题量分析
    难度分析
    知识点分析
    试卷信息分值设置
    分数:150分
    题数:26
    难度系数:0.08
    第Ⅰ卷
    一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
    1 2 3 4 5 6 7 8 9 10
    二、填空题(本大题共8个小题,每小题4分,共32分,请将每小题的答案直接填在答题卡中对应的横线上)
    11 12 13 14 15 16 17 18
    三、解答题(本大题共8个小题,第19题8分,其余每题各10分,共78分.解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上)
    19 20 21 22 23 24 25 26
    第Ⅱ卷
    年级
    平均数
    中位数
    众数

    88
    a
    95

    88
    87
    b

    相关试卷

    2023年中考考前押题密卷:数学(陕西卷)(参考答案):

    这是一份2023年中考考前押题密卷:数学(陕西卷)(参考答案),共11页。

    2023年中考考前押题密卷:数学(安徽卷)(参考答案):

    这是一份2023年中考考前押题密卷:数学(安徽卷)(参考答案),共11页。

    2023年中考考前押题密卷(重庆卷):

    这是一份2023年中考考前押题密卷(重庆卷),文件包含数学重庆卷全解全析docx、数学重庆卷考试版A4docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map