2024年中考押题预测卷(济南卷)数学(考试版A3)
展开(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1.如图所示,水平放置的几何体的左视图是( )
A.B.C.D.
2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4500000000人,将这个数用科学计数法表示为( )
A.B.C.D.
3.已知直线,将一块含角的直角三角板按如图方式放置.若,则的度数为( )
A.B.C.D.
4.有理数a,b在数轴上的对应位置如图所示,下列选项正确的是( )
A.B.C.D.
5.如图,在平面内将三角形标志绕其中心旋转后得到的图案( )
A.B.C.D.
6.下列计算正确的是( )
A.B.C.D.
7.已知反比例函数的图象上有点,则关于大小关系正确的是( )
A.B.C.D.
8.某校开展“龙的传人”演讲比赛,每班选两名选手参加比赛,九()班的小华,小丽,小军,小明积极报名参赛,从他们人中选名参赛,选中小华和小军的概率是( )
A.B.C.D.
9.如图,四边形是菱形,按以下步骤作图:①以顶点为圆心,长为半径作弧,交于点;②分别以、为圆心,以大于的长为半径作弧,两弧相交于点,作射线交于点,连接,若,菱形的面积为,则( )
A.B.C.D.
10.定义:在平面直角坐标系中,点的横、纵坐标的绝对值之和叫做点的勾股值,记.若抛物线与直线只有一个交点,已知点在第一象限,且,令,则的取值范围为( )
A. B. C. D.
第Ⅱ卷
二、填空题(本大题共6个小题,每小题4分,共24分)
11.因式分解:x2﹣3x= .
12.如图,飞镖游戏板由含大小相等的等腰直角三角形格子构成,小东向游戏板随机投掷一枚飞镖,击中黑色区域的概率是 .
13.若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是 .
14.如图,将长为,宽为的长方形先向右平移,再向下平移,得到长方形,则阴影部分的面积为 .
15.澄波湖公园有一条笔直的健身跑道,每天有很多市民在此晨练,成为济阳区一道靓丽的风景.每天早晨小红与父亲匀速跑步,已知父女俩起点、终点均相同,起点与终点间的距离为,约定先到终点的原地休息等待另一个人.已知小红先出发,如图两人之间的距离与父亲出发的时间的函数关系如图所示,父女两人之间的距离为时,父亲出发的时间x为 s.
16.如图,在矩形中,,,点、分别为、边上的点,且的长为2,点为的中点,点为上一动点,则的最小值为 .
三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤)
17.(6分)计算:.
18.(6分)解不等式组:,并写出它的所有整数解.
19.(6分)如图,在中,,点E,F在边上,,延长至点D,使.
(1)求证:;
(2)若,求的度数.
20.(8分)图1是某越野车的侧面示意图,折线段表示车后盖,已知,,,该车的高度.如图2,打开后备箱,车后盖落在处,与水平面的夹角.
(1)求打开后备箱后,车后盖最高点到地面的距离;
(2)若小琳爸爸的身高为,他从打开的车后盖处经过,有没有碰头的危险?请说明理由.
(结果精确到,参考数据:,,,)
21.(8分)某校劳动实践小组为了解全校1800名学生参与家务劳动的情况,随机抽取部分学生进行问卷调查,形成了如下调查报告:
请根据以上调查报告,解答下列问题:
(1)参与本次抽样调查的学生有__________人;
(2)若将上述报告第一项的条形统计图转化为相对应的扇形统计图,求扇形统计图中选项“天天参与”对应扇形的圆心角度数;
(3)估计该校1800名学生中,参与家务劳动项目为“整理房间”的人数;
(4)如果你是该校学生,为鼓励同学们更加积极地参与家务劳动,请你面向全体同学写出一条倡议.
22.(8分)如图,是的直径,点是上的一点,与的延长线交于点,,.
(1)求证:是的切线;
(2)过点作于点,若的半径为,求图中阴影部分的面积.
23.(10分)某超市计划在端午节前购进甲、乙两种粽子进行销售.经了解,每个乙种粽子的进价比每个甲种粽子的进价多2元,用1000元购进甲种粽子的个数与用1200元购进乙种粽子的个数相同.
(1)甲、乙两种粽子每个的进价分别是多少元?
(2)该超市计划购进这两种粽子共200个(两种都有),其中甲种粽子的个数不低于乙种粽子个数的2倍,若甲、乙两种粽子的售价分别为12元/个、15元/个,设购进甲种粽子m个,两种粽子全部售完时获得的利润为W元.
①求W与m的函数关系式;
②超市应如何进货才能获得最大利润,最大利润是多少元?
24.(10分)探究:是否存在一个新矩形,使其周长和面积为原矩形的2倍、倍、k倍?
(1)若该矩形是边长为2的正方形,是否存在一个正方形,使其周长和面积都是它的2倍?___(填“存在”或“不存在”).
(2)继续探究,若该矩形长为3,宽为2,是否存在一个矩形,使其周长和面积都为该矩形的2倍?小明同学有以下思路:设新矩形长和宽为x、y,则依题意,,联立得再探究根的情况:小慧同学认为:也可用反比例函数与一次函数图象证明,如图:则是否存在一个新矩形为原矩形周长和面积的2倍?请你结合小明和小慧的思路做出判断并说明理由.
(3)根据此方法,请你探究是否存在一个新矩形,使其周长和面积都为这个长为3,宽为2的矩形的倍?若存在,用图象表达;
(4)是否存在一个新矩形,使其周长和面积为长为3,宽为2的矩形的k倍?请写出当结论成立时k的取值范围.
25.(12分)如图,在平面直角坐标系中,直线分别与x,y轴交于点A,B,抛物线恰好经过这两点.
(1)求此抛物线的解析式;
(2)若点C的坐标是,将绕着点C逆时针旋转90°得到,点A的对应点是点E.
①写出点E的坐标,并判断点E是否在此抛物线上;
②若点P是y轴上的任一点,求取最小值时,点P的坐标.
26.(12分)如图1,将三角板放在正方形上,使三角板的直角顶点 E与正方形的顶点 A 重合,三角扳的一边交于点F,另一边交的延长线于点G.
(1)求证: ;
(2)如图2,移动三角板,使顶点 E始终在正方形的对角线上,其他条件不变,(1) 中的结论是否仍然成立? 若成立,请给予证明:若不成立. 请说明理由:
(3)如图3, 将(2) 中的“正方形”改为“矩形”,且使三角板的一边经过点B,其他条件不变,若 求 的值.
我市某校学生参与家务劳动情况调查报告
调查主题
学生参与家务劳动情况
调查方式
抽样调查
调查对象
学校学生
数据的收集、整理与描述
第一项
你日常家务劳动的参与程度是(单选)
A.天天参与;
B.经常参与;
C.偶尔参与;
D.几乎不参与.
第二项
你日常参与的家务劳动项目是(可多选)
E.扫地抹桌;
F.厨房帮厨;
G.整理房间;
H.洗晒衣服.
第三项
…
…
调查结论
…
2024年中考押题预测卷(河北卷)数学(考试版A3): 这是一份2024年中考押题预测卷(河北卷)数学(考试版A3),共4页。试卷主要包含了如图为一个运算程序,其结果为,等内容,欢迎下载使用。
2024年中考押题预测卷(海南卷)数学(考试版A3): 这是一份2024年中考押题预测卷(海南卷)数学(考试版A3),共3页。试卷主要包含了下列运算正确的是,方程的解为,若反比例函数的图象经过点等内容,欢迎下载使用。
2024年中考押题预测卷(广州卷)-数学(考试版)A3: 这是一份2024年中考押题预测卷(广州卷)-数学(考试版)A3,共3页。