所属成套资源:【二轮复习】2024年中考数学二轮专题突破练习(全国通用)
【二轮复习】中考数学 题型11 综合探究题 类型4 与旋转有关的探究题(专题训练)
展开
这是一份【二轮复习】中考数学 题型11 综合探究题 类型4 与旋转有关的探究题(专题训练),文件包含二轮复习中考数学题型11综合探究题类型4与旋转有关的探究题专题训练教师版docx、二轮复习中考数学题型11综合探究题类型4与旋转有关的探究题专题训练学生版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。
(1)如图1,当点E在线段上时,求证:D是的中点;
(2)如图2,若在线段上存在点F(不与点B,M重合)满足,连接,,直接写出的大小,并证明.
【答案】(1)见解析
(2),证明见解析
【分析】(1)由旋转的性质得,,利用三角形外角的性质求出,可得,等量代换得到即可;
(2)延长到H使,连接,,可得是的中位线,然后求出,设,,求出,证明,得到,再根据等腰三角形三线合一证明即可.
【详解】(1)证明:由旋转的性质得:,,
∵,
∴,
∴,
∴,
∴,即D是的中点;
(2);
证明:如图2,延长到H使,连接,,
∵,
∴是的中位线,
∴,,
由旋转的性质得:,,
∴,
∵,
∴,是等腰三角形,
∴,,
设,,则,,
∴,
∴,
∵,
∴,
∴,
∴,
在和中,,
∴,
∴,
∵,
∴,即.
【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,作出合适的辅助线,构造出全等三角形是解题的关键.
2.(2022·重庆市B卷)在△ABC中,∠BAC=90°,AB=AC=22,D为BC的中点,E,F分别为AC,AD上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.
(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;
(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=2AE;
(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B'EH,连接B'G,直接写出线段B'G的长度的最小值.
【答案】(1)解:如图1,连接CP,
由旋转知,CF=CG,∠FCG=90°,
∴△FCG为等腰直角三角形,
∵点P是FG的中点,
∴CP⊥FG,
∵点D是BC的中点,
∴DP=12BC,
在Rt△ABC中,AB=AC=22,
∴BC=2AB=4,
∴DP=2;
(2)证明:如图2,
过点E作EH⊥AE交AD的延长线于H,
∴∠AEH=90°,
由旋转知,EG=EF,∠FEG=90°,
∴∠FEG=∠AEH,
∴∠AEG=∠HEF,
∵AB=AC,点D是BC的中点,
∴∠BAD=∠CAD=12∠BAC=45°,
∴∠H=90°-∠CAD=45°=∠CAD,
∴AE=HE,
∴△EGA≌△EFH(SAS),
∴AG=FH,∠EAG=∠H=45°,
∴∠EAG=∠BAD=45°,
∵∠AMF=180°-∠BAD-∠AFM=135°-∠AFM,
∵∠AFM=∠EFH,
∴∠AMF=135°-∠EFH,
∵∠HEF=180°-∠EFH-∠H=135°-∠EFH,
∴∠AMF=∠HEF,
∵△EGA≌△EFH,
∴∠AEG=∠HEF,
∵∠AGN=∠AEG,
∴∠AGN=∠HEF,
∴∠AGN=∠AMF,
∵GN=MF,
∴△AGN≌△AMF(AAS),
∴AG=AM,
∵AG=FH,
∴AM=FH,
∴AF+AM=AF+FH=AH=2AE;
(3)解:∵点E是AC的中点,
∴AE=12AC=2,
根据勾股定理得,BE=AE2+AB2=10,
由折叠直,BE=B'E=10,
∴点B'是以点E为圆心,10为半径的圆上,
由旋转知,EF=EG,
∴点G是以点E为圆心,EG为半径的圆上,
∴B'G的最小值为B'E-EG,
要B'G最小,则EG最大,即EF最大,
∵点F在AD上,
∴点在点A或点D时,EF最大,最大值为2,
∴线段B'G的长度的最小值10-2.
3.(2023·四川自贡·统考中考真题)如图1,一大一小两个等腰直角三角形叠放在一起,,分别是斜边,的中点,.
(1)将绕顶点旋转一周,请直接写出点,距离的最大值和最小值;
(2)将绕顶点逆时针旋转(如图),求的长.
【答案】(1)最大值为,最小值为
(2)
【分析】(1)根据直角三角形斜边上的中线,得出的值,进而根据题意求得最大值与最小值即可求解;
(2)过点作,交的延长线于点,根据旋转的性质求得,进而得出,进而可得,勾股定理解,即可求解.
【详解】(1)解:依题意,,,
当在的延长线上时,的距离最大,最大值为,
当在线段上时,的距离最小,最小值为;
(2)解:如图所示,过点作,交的延长线于点,
∵绕顶点逆时针旋转,
∴,
∵,
∴,
∴,
∴,
∴,
在中,,
在中,,
∴.
【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,旋转的性质,含30度角的直角三角形的性质,熟练掌握旋转的性质,勾股定理是解题的关键.
4.(湖南省郴州市2021年中考数学试卷)如图1,在等腰直角三角形中,.点,分别为,的中点,为线段上一动点(不与点,重合),将线段绕点逆时针方向旋转得到,连接,.
(1)证明:;
(2)如图2,连接,,交于点.
①证明:在点的运动过程中,总有;
②若,当的长度为多少时,为等腰三角形?
【答案】(1)见详解;(2)①见详解;②当的长度为2或时,为等腰三角形
【分析】
(1)由旋转的性质得AH=AG,∠HAG=90°,从而得∠BAH=∠CAG,进而即可得到结论;
(2)①由,得AH=AG,再证明,进而即可得到结论;②为等腰三角形,分3种情况:(a)当∠QAG=∠QGA=45°时,(b)当∠GAQ=∠GQA=67.5°时,(c)当∠AQG=∠AGQ=45°时,分别画出图形求解,即可.
【详解】
解:(1)∵线段绕点A逆时针方向旋转得到,
∴AH=AG,∠HAG=90°,
∵在等腰直角三角形中,,AB=AC,
∴∠BAH=90°-∠CAH=∠CAG,
∴;
(2)①∵在等腰直角三角形中,AB=AC,点,分别为,的中点,
∴AE=AF,是等腰直角三角形,
∵AH=AG,∠BAH =∠CAG,
∴,
∴∠AEH=∠AFG=45°,
∴∠HFG=∠AFG+∠AFE=45°+45°=90°,即:;
②∵,点,分别为,的中点,
∴AE=AF=2,
∵∠AGH=45°,为等腰三角形,分3种情况:
(a)当∠QAG=∠QGA=45°时,如图,则∠HAF=90°-45°=45°,
∴AH平分∠EAF,
∴点H是EF的中点,
∴EH=;
(b)当∠GAQ=∠GQA=(180°-45°)÷2=67.5°时,如图,则∠EAH=∠GAQ=67.5°,
∴∠EHA=180°-45°-67.5°=67.5°,
∴∠EHA=∠EAH,
∴EH=EA=2;
(c)当∠AQG=∠AGQ=45°时,点H与点F重合,不符合题意,舍去,
综上所述:当的长度为2或时,为等腰三角形.
【点睛】
本题主要考查等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,熟练掌握全等三角形的判定定理,根据题意画出图形,进行分类讨论,是解题的关键.
5.(2023·辽宁·统考中考真题)在中,,,点为的中点,点在直线上(不与点重合),连接,线段绕点逆时针旋转,得到线段,过点作直线,过点作,垂足为点,直线交直线于点.
(1)如图,当点与点重合时,请直接写出线段与线段的数量关系;
(2)如图,当点在线段上时,求证:;
(3)连接,的面积记为,的面积记为,当时,请直接写出的值.
【答案】(1)
(2)见解析
(3)或
【分析】(1)可先证,得到,根据锐角三角函数,可得到和的数量关系,进而得到线段与线段的数量关系.
(2)可先证,得到,进而得到,问题即可得证.
(3)分两种情况:①点D在线段上,过点作垂直于,交于点,过点作垂直于,交于点,设,利用勾股定理,可用含的代数式表示,根据三角形面积公式,即可得到答案.②点D在线段的延长线上,过点作垂直于,交延长线于点,令交于点,连接,设,可证,进一步证得是等腰直角三角形,,利用勾股定理,可用含的代数式表示,根据三角形面积公式,即可得到答案
【详解】(1)解:.
理由如下:
如图,连接.
根据图形旋转的性质可知.
由题意可知,为等腰直角三角形,
为等腰直角三角形斜边上的中线,
,.
又,
.
在和中,
.
,.
.
.
.
(2)解:为等腰直角三角形斜边上的中线,
.
,
.
,,
.
,.
,.
在和中,
.
.
.
(3)解:当点D在线段延长线上时,不满足条件,故分两种情况:
①点D在线段上,如图,过点作垂直于,交于点;过点作垂直于,交于点.
设,则.
根据题意可知,四边形和为矩形,为等腰直角三角形.
,.
由(2)证明可知,
.
.
.
根据勾股定理可知
,
的面积与的面积之比
②点D在线段的延长线上,过点作垂直于,交延长线于点,令交于点,连接,由题意知,四边形,是矩形,
∵
∴
即
又∵,
∴
∴
而
∴
∴是等腰直角三角形,
设,则,
∴
中,
的面积与的面积之比
【点睛】本题主要考查全等三角形的判定及性质、勾股定理以及图形旋转的性质,灵活利用全等三角形的判定及性质是解题的关键.
6.(2021·四川中考真题)在等腰中,,点是边上一点(不与点、重合),连结.
(1)如图1,若,点关于直线的对称点为点,结,,则________;
(2)若,将线段绕点顺时针旋转得到线段,连结.
①在图2中补全图形;
②探究与的数量关系,并证明;
(3)如图3,若,且,试探究、、之间满足的数量关系,并证明.
【答案】(1)30°;(2)①见解析;②;见解析;(3),见解析
【分析】
(1)先根据题意得出△ABC是等边三角形,再利用三角形的外角计算即可
(2)①按要求补全图即可
②先根据已知条件证明△ABC是等边三角形,再证明,即可得出
(3)先证明,再证明,得出,从而证明,得出,从而证明
【详解】
解:(1)∵,
∴△ABC是等边三角形
∴∠B=60°
∵点关于直线的对称点为点
∴AB⊥DE,
∴
故答案为:;
(2)①补全图如图2所示;
②与的数量关系为:;
证明:∵,.
∴为正三角形,
又∵绕点顺时针旋转,
∴,,
∵,,
∴,
∴,
∴.
(3)连接.
∵,,∴.
∴.
又∵,
∴,
∴.∵,∴,
∴,
∴,
∴,.
∵,
∴.
又∵,
∴.
【点睛】
本题考查相似三角形的证明及性质、全等三角形的证明及性质、三角形的外角、轴对称,熟练进行角的转换是解题的关键,相似三角形的证明是重点
7.(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动
【问题情境】
刘老师先引导学生回顾了华东师大版教材七年级下册第页“探索”部分内容:
如图,将一个三角形纸板绕点逆时针旋转到达的位置,那么可以得到:,,;,,( )
刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键;故数学就是一门哲学.
【问题解决】
(1)上述问题情境中“( )”处应填理由:____________________;
(2)如图,小王将一个半径为,圆心角为的扇形纸板绕点逆时针旋转到达扇形纸板的位置.
①请在图中作出点;
②如果,则在旋转过程中,点经过的路径长为__________;
【问题拓展】
小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置,另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止,此时,两个纸板重叠部分的面积是多少呢?如图所示,请你帮助小李解决这个问题.
【答案】问题解决(1)旋转前后的图形对应线段相等,对应角相等
(2)①见解析;②
问题拓展:
【分析】问题解决(1)根据旋转性质得出旋转前后的图形对应线段相等,对应角相等;
(2)①分别作和的垂直平分线,两垂直平分线的交点即为所求点O;②根据弧长公式求解即可;
问题拓展,连接,交于,连接,,,由旋转得,,在和中求出和的长,可以求出,再证明,即可求出最后结果.
【详解】解:【问题解决】(1)旋转前后的图形对应线段相等,对应角相等
(2)①下图中,点O为所求
②连接,,
扇形纸板绕点逆时针旋转到达扇形纸板的位置,
,,
,
设,
,
,
在旋转过程中,点经过的路径长为以点为圆心,圆心角为,为半径的所对应的弧长,
点经过的路径长;
【问题拓展】解:连接,交于,连接,,如图所示
.
由旋转得,.
在中,
.
在中,
,
,
.
.
.
,
在和中,
,
又,,
.
又,
,
.
【点睛】本题考查了旋转的性质,弧长公式,解直角三角形,三角形全等的性质与判定,解题的关键是抓住图形旋转前后的对应边相等,对应角相等,正确作出辅助线构造出直角三角形.
8.(2021·浙江嘉兴市·中考真题)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形绕点顺时针旋转,得到矩形
[探究1]如图1,当时,点恰好在延长线上.若,求BC的长.
[探究2]如图2,连结,过点作交于点.线段与相等吗?请说明理由.
[探究3]在探究2的条件下,射线分别交,于点,(如图3),,存在一定的数量关系,并加以证明.
【答案】[探究1];[探究2],证明见解析;[探究3],证明见解析
【分析】
[探究1] 设,根据旋转和矩形的性质得出,从而得出,得出比例式,列出方程解方程即可;
[探究2] 先利用SAS得出,得出,,再结合已知条件得出,即可得出;
[探究3] 连结,先利用SSS得出,从而证得,再利用两角对应相等得出,得出即可得出结论.
【详解】
[探究1]如图1,
设.
∵矩形绕点顺时针旋转得到矩形,
∴点,,在同一直线上.
∴,,
∴.
∵,
∴.
又∵点在延长线上,
∴,
∴,∴.
解得,(不合题意,舍去)
∴.
[探究2] .
证明:如图2,连结.
∵,
∴.
∵,,,
∴.
∴,,
∵,,
∴,
∴.
[探究3]关系式为.
证明:如图3,连结.
∵,,,
∴.
∴,
∵,
,
∴,
∴.
在与中,
,,
∴,
∴,
∴.
∴.
【点睛】
本题考查了矩形的性质,旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,解一元二次方程等,解题的关键是灵活运用这些知识解决问题.
9.(2023·浙江绍兴·统考中考真题)在平行四边形中(顶点按逆时针方向排列),为锐角,且.
(1)如图1,求边上的高的长.
(2)是边上的一动点,点同时绕点按逆时针方向旋转得点.
①如图2,当点落在射线上时,求的长.
②当是直角三角形时,求的长.
【答案】(1)8
(2)①;②或
【分析】(1)利用正弦的定义即可求得答案;
(2)①先证明,再证明,最后利用相似三角形对应边成比例列出方程即可;
②分三种情况讨论完成,第一种:为直角顶点;第二种:为直角顶点;第三种,为直角顶点,但此种情况不成立,故最终有两个答案.
【详解】(1)在中,,
在中,.
(2)①如图1,作于点,由(1)得,,则,
作交延长线于点,则,
∴.
∵
∴.
由旋转知,
∴.
设,则.
∵,
∴,
∴,
∴,即,
∴,
∴.
②由旋转得,,
又因为,所以.
情况一:当以为直角顶点时,如图2.
∵,
∴落在线段延长线上.
∵,
∴,
由(1)知,,
∴.
情况二:当以为直角顶点时,如图3.
设与射线的交点为,
作于点.
∵,
∴,
∵,
∴,
∴.
又∵,
∴,
∴.
设,则,
∴
∵,
∴,
∴,
∴,
∴,
化简得,
解得,
∴.
情况三:当以为直角顶点时,
点落在的延长线上,不符合题意.
综上所述,或.
【点睛】本题考查了平行四边形的性质,正弦的定义,全等的判定及性质,相似的判定及性质,理解记忆相关定义,判定,性质是解题的关键.
10.(2021·浙江中考真题)如图,在菱形中,是锐角,E是边上的动点,将射线绕点A按逆时针方向旋转,交直线于点F.
(1)当时,
①求证:;
②连结,若,求的值;
(2)当时,延长交射线于点M,延长交射线于点N,连结,若,则当为何值时,是等腰三角形.
【答案】(1)①见解析;②;(2)当或2或时,是等腰三角形.
【分析】
(1)根据菱形的性质得到边相等,对角相等,根据已知条件证明出,得到,由,,得到AC是EF的垂直平分线,得到,,再根据已知条件证明出,算出面积之比;
(2)等腰三角形的存在性问题,分为三种情况:当时,,得到CE= ;当时,,得到CE=2;当时,,得到CE= .
【详解】
(1)①证明:在菱形中,
,
,
,
,
∴(ASA),
∴.
②解:如图1,连结.
由①知,,
.
在菱形中,,
∴,
设,则.
,
∴,
∴,
∴.
(2)解:在菱形中,,
,
,
同理,,
∴.
是等腰三角形有三种情况:
①如图2,当时,,
,
,
,
.
②如图3,当时,
,
,
,
∴.
③如图4,当时,
,
,
,
.
综上所述,当或2或时,是等腰三角形.
【点睛】
本题主要考查了菱形的基本性质、相似三角形的判定与性质、菱形中等腰三角形的存在性问题,解决本题的关键在于画出三种情况的等腰三角形(利用两圆一中垂),通过证明三角形相似,利用相似比求出所需线段的长.
11.(2023·四川南充·统考中考真题)如图,正方形中,点在边上,点是的中点,连接,.
(1)求证:;
(2)将绕点逆时针旋转,使点的对应点落在上,连接.当点在边上运动时(点不与,重合),判断的形状,并说明理由.
(3)在(2)的条件下,已知,当时,求的长.
【答案】(1)见解析
(2)等腰直角三角形,理由见解析
(3)
【分析】(1)根据正方形的基本性质以及“斜中半定理”等推出,即可证得结论;
(2)由旋转的性质得,从而利用等腰三角形的性质推出,再结合正方形对角线的性质推出,即可证得结论;
(3)结合已知信息推出,从而利用相似三角形的性质以及勾股定理进行计算求解即可.
【详解】(1)证:∵四边形为正方形,
∴,,
∵点是的中点,
∴,
∴,
∴,即:,
在与中,
∴,
∴;
(2)解:为等腰直角三角形,理由如下:
由旋转的性质得:,
∴,
∴,,
∵,
∴,即:,
∴,
∴,
∴,
∴,
∴为等腰直角三角形;
(3)解:如图所示,延长交于点,
∵,,
∴,,
∴,
∵,
∴,
∵,
∴,
∵,
∴,
∵,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
设,则,,
∴,
解得:,(不合题意,舍去),
∴.
【点睛】本题考查正方形的性质,旋转的性质,全等三角形和相似三角形的判定与性质等,理解并熟练运用基本图形的证明方法和性质,掌握勾股定理等相关计算方式是解题关键.
12.在等腰△ABC中,AC=BC,是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.
(1)当∠CAB=45°时.
①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是 .线段BE与线段CF的数量关系是 ;
②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;
学生经过讨论,探究出以下解决问题的思路,仅供大家参考:
思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;
思路二:取DE的中点G,连接AG,CG,并把绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.
(2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.
【答案】(1)①,;②仍然成立,证明见解析;(2),理由见解析.
【分析】
(1)①如图1中,连接BE,设DE交AB于T.首先证明再利用直角三角形斜边中线的性质解决问题即可.②解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.证明(SAS),可得结论.解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把绕点C逆时针旋转90°得到,连接DT,GT,BG.证明四边形BEGT是平行四边形,四边形DGBT是平行四边形,可得结论.
(2)结论:BE=.如图3中,取AB的中点T,连接CT,FT.证明,可得结论.
【详解】
解:(1)①如图1中,连接BE,设DE交AB于T.
∵CA=CB,∠CAB=45°,
∴∠CAB=∠ABC=45°,
∴∠ACB=90°,
∵∠ADE=∠ACB=45°,∠DAE=90°,
∴∠ADE=∠AED=45°,
∴AD=AE,
∴AT⊥DE,DT=ET,
∴AB垂直平分DE,
∴BD=BE,
∵∠BCD=90°,DF=FB,
∴CF=BD,
∴CF=BE.
故答案为:∠EAB=∠ABC,CF=BE.
②结论不变.
解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.
∵∠ACB=90°,CA=CB,AM=BM,
∴CM⊥AB,CM=BM=AM,
由①得:
设AD=AE=y.FM=x,DM=a,
点F是BD的中点,
则DF=FB=a+x,
∵AM=BM,
∴y+a=a+2x,
∴y=2x,即AD=2FM,
∵AM=BM,EN=BN,
∴AE=2MN,MN∥AE,
∴MN=FM,∠BMN=∠EAB=90°,
∴∠CMF=∠BMN=90°,
∴(SAS),
∴CF=BN,
∵BE=2BN,
∴CF=BE.
解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到,连接DT,GT,BG.
∵AD=AE,∠EAD=90°,EG=DG,
∴AG⊥DE,∠EAG=∠DAG=45°,AG=DG=EG,
∵∠CAB=45°,
∴∠CAG=90°,
∴AC⊥AG,
∴AC∥DE,
∵∠ACB=∠CBT=90°,
∴AC∥BT∥,
∵AG=BT,
∴DG=BT=EG,
∴四边形BEGT是平行四边形,四边形DGBT是平行四边形,
∴BD与GT互相平分,
∵点F是BD的中点,
∴BD与GT交于点F,
∴GF=FT,
由旋转可得;
是等腰直角三角形,
∴CF=FG=FT,
∴CF=BE.
(2)结论:BE=.
理由:如图3中,取AB的中点T,连接CT,FT.
∵CA=CB,
∴∠CAB=∠CBA=30°,∠ACB=120°,
∵AT=TB,
∴CT⊥AB,
∴AT=,
∴AB=,
∵DF=FB,AT=TB,
∴TF∥AD,AD=2FT,
∴∠FTB=∠CAB=30°,
∵∠CTB=∠DAE=90°,
∴∠CTF=∠BAE=60°,
∵∠ADE=∠ACB=60°,
∴AE=AD=FT,
∴,
∴,
∴,
∴.
【点睛】
本题属于相似形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,锐角三角函数的应用,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.
13.(2023·江苏扬州·统考中考真题)【问题情境】
在综合实践活动课上,李老师让同桌两位同学用相同的两块含的三角板开展数学探究活动,两块三角板分别记作和,设.
【操作探究】
如图1,先将和的边、重合,再将绕着点A按顺时针方向旋转,旋转角为,旋转过程中保持不动,连接.
(1)当时,________;当时,________;
(2)当时,画出图形,并求两块三角板重叠部分图形的面积;
(3)如图2,取的中点F,将绕着点A旋转一周,点F的运动路径长为________.
【答案】(1)2;30或210
(2)画图见解析;
(3)
【分析】(1)当时,与重合,证明为等边三角形,得出;当时,根据勾股定理逆定理得出,两种情况讨论:当在下方时,当在上方时,分别画出图形,求出结果即可;
(2)证明四边形是正方形,得出, 求出,得出,求出,根据求出两块三角板重叠部分图形的面积即可;
(3)根据等腰三角形的性质,得出,即,确定将绕着点A旋转一周,点F在以为直径的圆上运动,求出圆的周长即可.
【详解】(1)解:∵和中,
∴,
∴当时,与重合,如图所示:连接,
∵,,
∴为等边三角形,
∴;
当时,
∵,
∴当时,为直角三角形,,
∴,
当在下方时,如图所示:
∵,
∴此时;
当在上方时,如图所示:
∵,
∴此时;
综上分析可知,当时,或;
故答案为:2;30或210.
(2)解:当时,如图所示:
∵,
∴,
∴,
∵,
又∵,
∴四边形是矩形,
∵,
∴四边形是正方形,
∴,
∴,
∴,
∵,
∴,
∴
,
即两块三角板重叠部分图形的面积为.
(3)解:∵,为的中点,
∴,
∴,
∴将绕着点A旋转一周,点F在以为直径的圆上运动,
∵
∴点F运动的路径长为.
故答案为:.
【点睛】本题主要考查了正方形的判定和性质,解直角三角形,旋转的性质,确定圆的条件,等腰三角形的性质,等边三角形的判定和性质,解题的关键是画出相应的图形,数形结合,并注意分类讨论.
14.(2021·江苏中考真题)已知正方形ABCD与正方形AEFG,正方形AEFG绕点A旋转一周.
(1)如图①,连接BG、CF,求的值;
(2)当正方形AEFG旋转至图②位置时,连接CF、BE,分别去CF、BE的中点M、N,连接MN、试探究:MN与BE的关系,并说明理由;
(3)连接BE、BF,分别取BE、BF的中点N、Q,连接QN,AE=6,请直接写出线段QN扫过的面积.
【答案】(1);(2);(3)
【分析】
(1)由旋转的性质联想到连接,证明即可求解;
(2)由M、N分别是CF、BE的中点,联想到中位线,故想到连接BM并延长使BM=MH,连接FH、EH,则可证即可得到,再由四边形内角和为可得,则可证明,即是等腰直角三角形,最后利用中位线的性质即可求解;
(3)Q、N两点因旋转位置发生改变,所以Q、N两点的轨迹是圆,又Q、N两点分别是BF、BE中点,所以想到取AB的中点O,结合三角形中位线和圆环面积的求解即可解答.
【详解】
解:(1)连接
四边形ABCD和四边形AEFG是正方形
分别平分
即
且都是等腰直角三角形
(2)连接BM并延长使BM=MH,连接FH、EH
是CF的中点
又
在四边形BEFC中
又
即
即
又四边形ABCD和四边形AEFG是正方形
三角形BEH是等腰直角三角形
M、N分别是BH、BE的中点
(3)取AB的中点O,连接OQ、ON,连接AF
在中,O、Q分别是AB、BF的中点
同理可得
所以QN扫过的面积是以O为圆心,和为半径的圆环的面积
.
【点睛】
本题考察旋转的性质、三角形相似、三角形全等、正方形的性质、中位线的性质与应用和动点问题,属于几何综合题,难度较大.解题的关键是通过相关图形的性质做出辅助线.
15.(2023·湖南·统考中考真题)(1)[问题探究]
如图1,在正方形中,对角线相交于点O.在线段上任取一点P(端点除外),连接.
①求证:;
②将线段绕点P逆时针旋转,使点D落在的延长线上的点Q处.当点P在线段上的位置发生变化时,的大小是否发生变化?请说明理由;
③探究与的数量关系,并说明理由.
(2)[迁移探究]
如图2,将正方形换成菱形,且,其他条件不变.试探究与的数量关系,并说明理由.
【答案】(1)①见解析;②不变化,,理由见解析;③,理由见解析
(2),理由见解析
【分析】(1)①根据正方形的性质证明,即可得到结论;
②作,垂足分别为点M、N,如图,可得,证明四边形是矩形,推出,证明, 得出,进而可得结论;
③作交于点E,作于点F,如图,证明,即可得出结论;
(2)先证明,作交于点E,交于点G,如图,则四边形是平行四边形,可得,都是等边三角形,进一步即可证得结论.
【详解】(1)①证明:∵四边形是正方形,
∴,
∵,
∴,
∴;
②的大小不发生变化,;
证明:作,垂足分别为点M、N,如图,
∵四边形是正方形,
∴,,
∴四边形是矩形,,
∴,
∵,
∴,
∴,
∵,
∴,即;
③;
证明:作交于点E,作于点F,如图,
∵四边形是正方形,
∴,,
∴,四边形是矩形,
∴,
∴,
∵,,
∴,
作于点M,
则,
∴,
∵,
∴,
∴;
(2);
证明:∵四边形是菱形,,
∴,
∴是等边三角形,垂直平分,
∴,
∵,
∴,
作交于点E,交于点G,如图,
则四边形是平行四边形,,,
∴,都是等边三角形,
∴,
作于点M,则,
∴,
∴.
【点睛】本题是四边形综合题,主要考查了正方形、菱形的性质,矩形、平行四边形、等边三角形的判定和性质,全等三角形的判定和性质以及解直角三角形等知识,熟练掌握相关图形的判定和性质、正确添加辅助线是解题的关键.
16.如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.
(1)连结CQ,求证:AP=CQ;
(2)若AP=14AC,求CE:BC的值;
(3)求证:PF=EQ.
【分析】(1)证明△BAP≌△BCQ(SAS)可得结论.
(2)过点C作CH⊥PQ于H,过点B作BT⊥PQ于T.由AP=14AC,可以假设AP=CQ=a,则PC=3a,解直角三角形求出CH.BT,利用平行线分线段成比例定理解决问题即可.
(3)证明△PGB≌△QEB,推出EQ=PG,再证明△PFG是等腰直角三角形即可.
【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,
∴BP=BQ,∠PBQ=90°.
∵四边形ABCD是正方形,
∴BA=BC,∠ABC=90°.
∴∠ABC=∠PBQ.
∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.
在△BAP和△BCQ中,
∵BA=BC∠ABP=∠CBQBP=BQ,
∴△BAP≌△BCQ(SAS).
∴CQ=AP.
(2)解:过点C作CH⊥PQ于H,过点B作BT⊥PQ于T.
∵AP=14AC,
∴可以假设AP=CQ=a,则PC=3a,∵四边形ABCD是正方形,
∴∠BAC=∠ACB=45°,
∵△ABP≌△CBQ,
∴∠BCQ=∠BAP=45°,
∴∠PCQ=90°,
∴PQ=PC2+CQ2=(3a)2+a2=10a,
∵CH⊥PQ,
∴CH=PC⋅CQPQ=31010a,
∵BP=BQ,BT⊥PQ,
∴PT=TQ,
∵∠PBQ=90°,
∴BT=12PQ=102a,
∵CH∥BT,
∴CEEB=CHBT=31010a102a=35,
∴CECB=38.
(3)解:结论:PF=EQ,理由是:
如图2,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,
∵∠BPQ=45°,
∴∠GPB=45°,
∴∠GPB=∠PQB=45°,
∵PB=BQ,∠ABP=∠CBQ,
∴△PGB≌△QEB,
∴EQ=PG,
∵∠BAD=90°,
∴F、A、G、P四点共圆,
连接FG,
∴∠FGP=∠FAP=45°,
∴△FPG是等腰直角三角形,
∴PF=PG,
∴PF=EQ.
17.(2023·湖北随州·统考中考真题)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.
(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)
当的三个内角均小于时,
如图1,将绕,点C顺时针旋转得到,连接,
由,可知为 ① 三角形,故,又,故,
由 ② 可知,当B,P,,A在同一条直线上时,取最小值,如图2,最小值为,此时的P点为该三角形的“费马点”,且有 ③ ;
已知当有一个内角大于或等于时,“费马点”为该三角形的某个顶点.如图3,若,则该三角形的“费马点”为 ④ 点.
(2)如图4,在中,三个内角均小于,且,已知点P为的“费马点”,求的值;
(3)如图5,设村庄A,B,C的连线构成一个三角形,且已知.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/,a元/,元/,选取合适的P的位置,可以使总的铺设成本最低为___________元.(结果用含a的式子表示)
【答案】(1)①等边;②两点之间线段最短;③;④A.
(2)
(3)
【分析】(1)根据旋转的性质和两点之间线段最短进行推理分析即可得出结论;
(2)根据(1)的方法将绕,点C顺时针旋转得到,即可得出可知当B,P,,A在同一条直线上时,取最小值,最小值为,在根据可证明,由勾股定理求即可,
(3)由总的铺设成本,通过将绕,点C顺时针旋转得到,得到等腰直角,得到,即可得出当B,P,,A在同一条直线上时,取最小值,即取最小值为,然后根据已知和旋转性质求出即可.
【详解】(1)解:∵,
∴为等边三角形;
∴,,
又,故,
由两点之间线段最短可知,当B,P,,A在同一条直线上时,取最小值,
最小值为,此时的P点为该三角形的“费马点”,
∴,,
∴,,
又∵,
∴,
∴,
∴;
∵,
∴,,
∴,,
∴三个顶点中,顶点A到另外两个顶点的距离和最小.
又∵已知当有一个内角大于或等于时,“费马点”为该三角形的某个顶点.
∴该三角形的“费马点”为点A,
故答案为:①等边;②两点之间线段最短;③;④.
(2)将绕,点C顺时针旋转得到,连接,
由(1)可知当B,P,,A在同一条直线上时,取最小值,最小值为,
∵,
∴,
又∵
∴,
由旋转性质可知:,
∴,
∴最小值为,
(3)∵总的铺设成本
∴当最小时,总的铺设成本最低,
将绕,点C顺时针旋转得到,连接,
由旋转性质可知:,,,,
∴,
∴,
当B,P,,A在同一条直线上时,取最小值,即取最小值为,
过点作,垂足为,
∵,,
∴,
∴,
∴,
∴,
∴
的最小值为
总的铺设成本(元)
故答案为:
【点睛】本题考查了费马点求最值问题,涉及到的知识点有旋转的性质,等边三角形的判定与性质,勾股定理,以及两点之间线段最短等知识点,读懂题意,利用旋转作出正确的辅助线是解本题的关键.
18.如图1,在等腰直角三角形ADC中,∠ADC=90°,AD=4.点E是AD的中点,以DE为边作正方形DEFG,连接AG,CE.将正方形DEFG绕点D顺时针旋转,旋转角为α(0°<α<90°).
(1)如图2,在旋转过程中,
①判断△AGD与△CED是否全等,并说明理由;
②当CE=CD时,AG与EF交于点H,求GH的长.
(2)如图3,延长CE交直线AG于点P.
①求证:AG⊥CP;
②在旋转过程中,线段PC的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.
【分析】(1)①结论:△AGD≌△CED.根据SAS证明即可.
②如图2中,过点A作AT⊥GD于T.解直角三角形求出AT,GT,再利用相似三角形的性质求解即可.
(2)①如图3中,设AD交PC于O.利用全等三角形的性质,解决问题即可.
②因为∠CPA=90°,AC是定值,推出当∠ACP最小时,PC的值最大,推出当DE⊥PC时,∠ACP的值最小,此时PC的值最大,此时点F与P重合(如图4中).
【解析】(1)①如图2中,结论:△AGD≌△CED.
理由:∵四边形EFGD是正方形,
∴DG=DE,∠GDE=90°,
∵DA=DC,∠ADC=90°,
∴∠GDE=∠ADC,
∴∠ADG=∠CDE,
∴△AGD≌△CED(SAS).
②如图2中,过点A作AT⊥GD于T.
∵△AGD≌△CED,CD=CE,
∴AD=AG=4,
∵AT⊥GD,
∴TG=TD=1,
∴AT=AG2-TG2=15,
∵EF∥DG,
∴∠GHF=∠AGT,
∵∠F=∠ATG=90°,
∴△GFH∽△ATG,
∴GHAG=FGAT,
∴GH4=215,
∴GH=81515.
(2)①如图3中,设AD交PC于O.
∵△AGD≌△CED,
∴∠DAG=∠DCE,
∵∠DCE+∠COD=90°,∠COD=∠AOP,
∴∠AOP+∠DAG=90°,
∴∠APO=90°,
∴CP⊥AG.
②∵∠CPA=90°,AC是定值,
∴当∠ACP最小时,PC的值最大,
∴当DE⊥PC时,∠ACP的值最小,此时PC的值最大,此时点F与P重合(如图4中),
∵∠CED=90°,CD=4,DE=2,
∴EC=CD2-DE2=42-22=23,
∵EF=DE=2,
∴CP=CE+EF=2+23,
∴PC的最大值为2+23.
19.(2023·湖北黄冈·统考中考真题)【问题呈现】
和都是直角三角形,,连接,,探究,的位置关系.
(1)如图1,当时,直接写出,的位置关系:____________;
(2)如图2,当时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.
【拓展应用】
(3)当时,将绕点C旋转,使三点恰好在同一直线上,求的长.
【答案】(1)
(2)成立;理由见解析
(3)或
【分析】(1)根据,得出,,证明,得出,根据,求出,即可证明结论;
(2)证明,得出,根据,求出,即可证明结论;
(3)分两种情况,当点E在线段上时,当点D在线段上时,分别画出图形,根据勾股定理求出结果即可.
【详解】(1)解:∵,
∴,,
∵,
∴,
∴,
∴,
∴,
∵,
,
∴,
∴;
故答案为:.
(2)解:成立;理由如下:
∵,
∴,
∴,
∵,
∴,
∴,
∵,
,
∴,
∴;
(3)解:当点E在线段上时,连接,如图所示:
设,则,
根据解析(2)可知,,
∴,
∴,
根据解析(2)可知,,
∴,
根据勾股定理得:,
即,
解得:或(舍去),
∴此时;
当点D在线段上时,连接,如图所示:
设,则,
根据解析(2)可知,,
∴,
∴,
根据解析(2)可知,,
∴,
根据勾股定理得:,
即,
解得:或(舍去),
∴此时;
综上分析可知,或.
【点睛】本题主要考查了全等三角形的判定和性质,相似三角形的判定和性质,三角形内角和定理的应用,勾股定理,解题的关键是熟练掌握三角形相似的判定方法,画出相应的图形,注意分类讨论.
20.(2023·内蒙古赤峰·统考中考真题)数学兴趣小组探究了以下几何图形.如图①,把一个含有角的三角尺放在正方形中,使角的顶点始终与正方形的顶点重合,绕点旋转三角尺时,角的两边,始终与正方形的边,所在直线分别相交于点,,连接,可得.
【探究一】如图②,把绕点C逆时针旋转得到,同时得到点在直线上.求证:;
【探究二】在图②中,连接,分别交,于点,.求证:;
【探究三】把三角尺旋转到如图③所示位置,直线与三角尺角两边,分别交于点,.连接交于点,求的值.
【答案】[探究一]见解析;[探究二]见解析;[探究三]
【分析】[探究一]证明,即可得证;
[探究二]根据正方形的性质证明,根据三角形内角和得出,加上公共角,进而即可证明
[探究三]先证明,得出,,将绕点顺时针旋转得到,则点在直线上.得出,根据全等三角形的性质得出,进而可得,证明,根据相似三角形的性质得出,即可得出结论.
【详解】[探究一]
∵把绕点C逆时针旋转得到,同时得到点在直线上,
∴,
∴,
∴,
在与中
∴
∴
[探究二]证明:如图所示,
∵四边形是正方形,
∴,
又,
∴,
∵,
∴,
又∵,
∴,
又∵公共角,
∴;
[探究三] 证明:∵是正方形的对角线,
∴,,
∴,
∵,
∴,
即,
∴,
∴,,
如图所示,将绕点顺时针旋转得到,则点在直线上.
∴,,
∴,
又,
∴,
∴,
∵,
∴,
又,
∴,
∴,
即.
【点睛】本题考查了全等三角形的性质与判定,旋转的性质,正方形的性质,相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.
相关试卷
这是一份【二轮复习】中考数学 题型11 综合探究题 类型3 与折叠有关的探究题(专题训练),文件包含二轮复习中考数学题型11综合探究题类型3与折叠有关的探究题专题训练教师版docx、二轮复习中考数学题型11综合探究题类型3与折叠有关的探究题专题训练学生版docx等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。
这是一份【二轮复习】中考数学 题型11 综合探究题 类型2 与动点有关的探究题(专题训练),文件包含二轮复习中考数学题型11综合探究题类型2与动点有关的探究题专题训练教师版docx、二轮复习中考数学题型11综合探究题类型2与动点有关的探究题专题训练学生版docx等2份试卷配套教学资源,其中试卷共63页, 欢迎下载使用。
这是一份题型11 综合探究题 类型4 与旋转有关的探究题(专题训练)-2024年中考数学二轮题型突破(全国通用),文件包含题型11综合探究题类型4与旋转有关的探究题专题训练教师版docx、题型11综合探究题类型4与旋转有关的探究题专题训练学生版docx等2份试卷配套教学资源,其中试卷共80页, 欢迎下载使用。