【三轮冲刺】高考数学专题01 集合中的新定义问题(强化突破)(新高考新题型).zip
展开新定义题目简介
题型特点
“新定义”题型内容新颖,题目中常常伴随有“定义”、“规定”等字眼,题目一般都是用抽象的语言给出新的定义、运算或符号,没有过多的解析说明,要求考生自己仔细揣摩、体会和理解定义的含义,在阅读新定义后要求马上运用它解决相关问题,考查考生的理解与运算、信息迁移的能力。
解题策略
求解“新定义”题目,主要分如下几步:
对新定义进行信息提取,明确新定义的名称和符号;
对新定义所提取的信息进行加工,探求解决方法和相近的知识点,明确它们的相同点和相似点;
对定义中提取的知识进行转换、提取和转换,这是解题的关键,如果题目是新定义的运算、法则,直接按照法则计算即可;若新定义的性质,一般要判断性质的适用性,能否利用定义的外延,可用特质排除,注意新定义题目一般在高考试卷的压轴位置,往往设置三问,第一问的难度并不大,所以对于基础差的考生也不要轻易放弃。
1.已知数集具有性质P:对任意的k,,使得成立.
(1)分别判断数集与是否具有性质P,并说明理由;
(2)若,求A中所有元素的和的最小值并写出取得最小值时所有符合条件的集合A;
(3)求证:.
2.给定正整数,设集合.若对任意,,,两数中至少有一个属于,则称集合具有性质.
(1)分别判断集合与是否具有性质;
(2)若集合具有性质,求的值;
(3)若具有性质的集合中包含6个元素,且,求集合.
3.已知集合中含有三个元素,同时满足①;②;③为偶数,那么称集合具有性质.已知集合,对于集合的非空子集,若中存在三个互不相同的元素,使得均属于,则称集合是集合的“期待子集”.
(1)试判断集合是否具有性质,并说明理由;
(2)若集合具有性质,证明:集合是集合的“期待子集”;
(3)证明:集合具有性质的充要条件是集合是集合的“期待子集”.
4.已知有个连续正整数元素的有限集合(,),记有序数对,若对任意,,,且,A同时满足下列条件,则称为元完备数对.
条件①:;
条件②:.
(1)试判断是否存在3元完备数对和4元完备数对,并说明理由;
(2)试证明不存在8元完备数对.
5.已知集合,若中元素的个数为,且存在,使得,则称是的子集.
(1)若,写出的所有子集;
(2)若为的子集,且对任意的,存在,使得,求的值.
6.给定正整数,设集合.对于集合中的任意元素和,记.设,且集合,对于中任意元素,若则称具有性质.
(1)判断集合是否具有性质?说明理由;
(2)判断是否存在具有性质的集合,并加以证明.
7.已知集合,其中且,非空集合,记为集合B中所有元素之和,并规定当中只有一个元素时,.
(1)若,写出所有可能的集合B;
(2)若,且是12的倍数,求集合B的个数;
(3)若,证明:存在非空集合,使得是的倍数.
8.设正整数,若由实数组成的集合满足如下性质,则称为集合:对中任意四个不同的元素,均有.
(1)判断集合和是否为集合,说明理由;
(2)若集合为集合,求中大于1的元素的可能个数;
(3)若集合为集合,求证:中元素不能全为正实数.
9.设,若非空集合A,B,C同时满足以下4个条件,则称A,B,C是“无和划分”:
①;
②,,;
③,且C中的最小元素大于B中的最小元素;
④,,,必有,,.
(1)若,,,判断A,B,C是否是“无和划分”,并说明理由.
(2)已知A,B,C是“无和划分”().
(i)证明:对于任意m,,都有;
(ii)若存在i,,使得,记.证明:Ω中的所有奇数都属于A.
(考生务必将答案答在答题卡上,在试卷上作答无效)
10.对于函数,记所有满足,都有的函数构成集合;所有满足,都有的函数构成集合.
(1)分别判断下列函数是否为集合中的元素,并说明理由,
①;②;
(2)若()是集合中的元素,求的最小值;
(3)若,求证:是的充分不必要条件.
11.设整数集合,其中,且对于任意,若,则.
(1)请写出一个满足条件的集合A;
(2)证明:任意,.
12.集合是由个正整数组成的集合,如果任意去掉其中一个元素之后,剩余的所有元素组成的集合都能分为两个交集为空的集合,且这两个集合的所有元素之和相等,就称集合为“可分集合”.
(1)判断集合、是否为“可分集合”(不用说明理由);
(2)求证:五个元素的集合一定不是“可分集合”;
(3)若集合是“可分集合”,证明是奇数.
13.对于正整数,定义.对于任意的,称为的第个分量,称是的一个“协同子集”.如果同时满足:①的元素个数不少于;②对于任何、、,存在,使得、、的第个分量都是.
(1)对于,若是的一个恰好含有四个元素的“协同子集”,且其中两个元素是和,直接写出另外两个元素;
(2)证明:若是的一个“协同子集”,则的元素个数不超过;
(3)证明:若是的一个“协同子集”,且的元素个数恰好是,则存在唯一的,使得中所有元素的第个分量都是.
14.定义1:通常我们把一个以集合作为元素的集合称为族(cllectin).
定义2:集合上的一个拓扑(tplgy)乃是的子集为元素的一个族,它满足以下条件:(1)和在中;(2)的任意子集的元素的并在中;(3)的任意有限子集的元素的交在中.
(1)族,族,判断族与族是否为集合的拓扑;
(2)设有限集为全集
(i)证明:;
(ii)族为集合上的一个拓扑,证明:由族所有元素的补集构成的族为集合上的一个拓扑.
15.已知集合,对于集合的非空子集,若中存在三个互不相同的元素,使得均属于,则称集合是集合的“期待子集”.
(1)试判断集合是否为集合的“期待子集”;(直接写出答案,不必说明理由)
(2)如果一个集合中含有三个元素,同时满足①,②,③为偶数.那么称该集合具有性质.对于集合的非空子集,证明:集合是集合的“期待子集”的充要条件是集合具有性质.
16.对任意正整数n,记集合,.,,若对任意都有,则记.
(1)写出集合和;
(2)证明:对任意,存在,使得;
(3)设集合.求证:中的元素个数是完全平方数.
17.已知集合,集合,且满足,,与恰有一个成立.对于定义,以及,其中.
例如.
(1)若,,求的值及的最大值;
(2)从中任意删去两个数,记剩下的数的和为,求的最小值(用表示);
(3)对于满足的每一个集合,集合中是否都存在三个不同的元素,,,使得恒成立?请说明理由.
18.已知正整数集合,对任意,定义.若存在正整数,使得对任意,都有,则称集合具有性质.记是集合中的最大值.
(1)判断集合和集合是否具有性质,直接写出结论;
(2)若集合具有性质,求证:;
(3)若集合具有性质,求的最大值.
19.已知集合具有性质:对任意且,与至少一个属于.
(1)分别判断集合与是否具有性质,并说明理由;
(2)具有性质,当时,求集合;
(3)记,求.
20.已知集合为非空数集,定义:,(实数a,b可以相同)
(1)若集合,直接写出集合S、T;
(2)若集合,,且,求证:;
(3)若集合,,记为集合中元素的个数,求的最大值.
21.高一的珍珍阅读课外书籍时,发现笛卡尔积是代数和图论中一个很重要的课题.对于非空数集A,B,定义且,将称为“A与B的笛卡尔积”
(1)若,,求和;
(2)试证明:“”是“”的充要条件;
(3)若集合是有限集,将集合的元素个数记为.已知,且存在实数满足对任意恒成立.求的取值范围,并指明当取到最值时和满足的关系式及应满足的条件.
22.设M是由复数组成的集合,对M的一个子集A,若存在复平面上的一个圆,使得A的所有数在复平面上对应的点都在圆内或圆周上,且中的数对应的点都在圆外,则称A是一个M的“可分离子集”.
(1)判断是否是的“可分离子集”,并说明理由;
(2)设复数z满足,其中分别表示z的实部和虚部.证明:是的“可分离子集”当且仅当.
23.已知为有穷正整数数列,且,集合.若存在,使得,则称为可表数,称集合为可表集.
(1)若,判定31,1024是否为可表数,并说明理由;
(2)若,证明:;
(3)设,若,求的最小值.
24.设数阵,其中.设,其中且.定义变换为“对于数阵的每一行,若其中有或,则将这一行中每个数都乘以;若其中没有且没有,则这一行中所有数均保持不变”表示“将经过变换得到,再将经过变换得到以此类推,最后将经过变换得到.记数阵中四个数的和为.
(1)若,写出经过变换后得到的数阵,并求的值;
(2)若,求的所有可能取值的和;
(3)对任意确定的一个数阵,证明:的所有可能取值的和不超过.
25.已知为所有元有序数组所组成的集合.其中().
对于中的任意元素,定义,的距离:
若,为的子集,且有个元素,并且满足任意,都存在唯一的,使得,则称为“好集”.
(1)若,,,,,,求,及的值;
(2)当时,求证:存在“好集”,且“好集”中不同元素的距离为5;
(3)求证:当时,“好集”不存在.
26.对于非空有限整数集X,,定义,对现有两个非空有限整数集A,B,已知且.
(1)当时求集合B;
(2)证明:;
(3)当且时,任取构造函数问:当a,b取何值时,的最小值最小?
27.已知集合,任取,,定义,其中表示,中的最大值,例如,.
(1)当且时,写出满足的所有元素;
(2)设,满足,求的最大值和最小值;
(3)若的子集满足:,成立,求集合中元素个数的最大值.
28.设正整数,集合,对于集合中的任意元素和,及实数,定义:当且仅当时;;.若的子集满足:当且仅当时,,则称为的完美子集.
(1)当时,已知集合,.分别判断这两个集合是否为的完美子集,并说明理由;
(2)当时,已知集合.若不是的完美子集,求的值;
(3)已知集合,其中.若对任意都成立,判断是否一定为的完美子集.若是,请说明理由;若不是,请给出反例.
29.已知A为有限个实数构成的非空集合,设,,记集合和其元素个数分别为,.设.例如当时,,,,所以.
(1)若,求的值;
(2)设A是由3个正实数组成的集合且,;,证明:为定值;
(3)若是一个各项互不相同的无穷递增正整数列,对任意,设,.已知,,且对任意,,求数列的通项公式.
30.集合称为三元有序数组集,对于,互不相等,令,其中,.
(1)当时,试求出和;
(2)证明:对于任意的中的三个数至多有一个为0;
(3)证明:存在.当时,向量满足.
31.已知集合,表示集合中的元素个数,当集合的子集满足时,称为集合的二元子集. 若对集合的任意个不同的二元子集,均存在对应的集合满足:①;②;③,则称集合具有性质.
(1)当时,若集合具有性质,请直接写出集合的所有二元子集以及的一个取值;
(2)当时,判断集合是否具有性质?并说明理由;
(3)当时,若集合具有性质,求的最小值.
32.设集合A为含有n个元素的有限集.若集合A的m个子集,,…,满足:
①,,…,均非空;
②,,…,中任意两个集合交集为空集;
③.
则称,,…,为集合A的一个m阶分拆.
(1)若,写出集合A的所有2阶分拆(其中,与,为集合A的同一个2阶分拆);
(2)若,,为A的2阶分拆,集合所有元素的平均值为P,集合所有元素的平均值为Q,求的最大值;
(3)设,,为正整数集合(,)的3阶分拆.若,,满足任取集合A中的一个元素构成,其中,且与中元素的和相等.求证:n为奇数.
【三轮冲刺】高考数学专题04 三角函数中的新定义问题(强化突破)(新高考新题型).zip: 这是一份【三轮冲刺】高考数学专题04 三角函数中的新定义问题(强化突破)(新高考新题型).zip,文件包含三轮冲刺高中数学专题04三角函数中的新定义问题强化训练解析版docx、三轮冲刺高中数学专题04三角函数中的新定义问题强化训练原题版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
【三轮冲刺】高考数学专题03 复数、不等式中的新定义问题(强化突破)(新高考新题型).zip: 这是一份【三轮冲刺】高考数学专题03 复数、不等式中的新定义问题(强化突破)(新高考新题型).zip,文件包含三轮冲刺高中数学专题03复数不等式中的新定义问题强化训练解析版docx、三轮冲刺高中数学专题03复数不等式中的新定义问题强化训练原题版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
【三轮冲刺】2024年高考数学新结构模拟卷(六).zip: 这是一份【三轮冲刺】2024年高考数学新结构模拟卷(六).zip,文件包含三轮冲刺2024年高考数学新结构模拟卷六解析版docx、三轮冲刺2024年高考数学新结构模拟卷六答案docx、三轮冲刺2024年高考数学新结构模拟卷六考试A4版docx、三轮冲刺2024年高考数学新结构模拟卷六考试A3版docx、三轮冲刺2024年高考数学新结构模拟卷六答题卡pdf等5份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。