所属成套资源:挑战2023年中考数学压轴题秘笈大揭秘(全国通用)
专题15二次函数与角综合问题-(学生版)-拔尖2023中考数学压轴题突破(全国通用)
展开
这是一份专题15二次函数与角综合问题-(学生版)-拔尖2023中考数学压轴题突破(全国通用),共16页。试卷主要包含了角的数量关系问题,角的最值问题等内容,欢迎下载使用。
二次函数与角综合问题,常见的主要有三种类型:
特殊角问题:
利用特殊角的三角函数值找到线段之间的数量关系
遇到特殊角可以构造特殊三角形,如遇到45°构造等腰直角三角形,遇到30°、60°构造等边三角形,遇到90°构造直角三角形
2.角的数量关系问题
(1)等角问题:借助特殊图形的性质、全等和相似的性质来解决;构造圆,利用圆周角的性质来解决
(2)二倍角问题:利用角平分线的性质、等腰三角形的性质、对称、辅助圆等知识来解答
(3)角的和差问题
3.角的最值问题:利用辅助圆等知识来解答
【例1】(2022•西宁)如图,抛物线y=ax2+bx+3与x轴交于点A(3,0),与y轴交于点B,点C在直线AB上,过点C作CD⊥x轴于点D(1,0),将△ACD沿CD所在直线翻折,使点A恰好落在抛物线上的点E处.
(1)求抛物线解析式;
(2)连接BE,求△BCE的面积;
(3)抛物线上是否存在一点P,使∠PEA=∠BAE?若存在,求出P点坐标;若不存在,请说明理由.
【例2】(2022•益阳)如图,在平面直角坐标系xOy中,抛物线E:y=﹣(x﹣m)2+2m2(m<0)的顶点P在抛物线F:y=ax2上,直线x=t与抛物线E,F分别交于点A,B.
(1)求a的值;
(2)将A,B的纵坐标分别记为yA,yB,设s=yA﹣yB,若s的最大值为4,则m的值是多少?
(3)Q是x轴的正半轴上一点,且PQ的中点M恰好在抛物线F上.试探究:此时无论m为何负值,在y轴的负半轴上是否存在定点G,使∠PQG总为直角?若存在,请求出点G的坐标;若不存在,请说明理由.
【例3】.(2022•鄂尔多斯)如图,在平面直角坐标系中,抛物线y=ax2+bx+2经过A(,0),B(3,)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)点P在抛物线上,过P作PD⊥x轴,交直线BC于点D,若以P、D、O、C为顶点的四边形是平行四边形,求点P的横坐标;
(3)抛物线上是否存在点Q,使∠QCB=45°?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
【例4】(2022•菏泽)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC.
(1)求抛物线的表达式;
(2)将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;
(3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.
1.(2022•江岸区模拟)已知:抛物线y=﹣(x+k)(x﹣7)交x轴于A、B(A左B右),交y轴正半轴于点C,且OB=OC.
(1)如图1,求抛物线的解析式;
(2)如图2,点P为第一象限抛物线上一点,连接AP,AP交y轴于点D,设P的横坐标为m,CD的长为d,求d与m的函数解析式(不要求写出自变量m的取值范围);
(3)如图3,在(2)的条件下,过点P作PE⊥y轴于点E,延长EP至点G,使得PG=3CE,连接CG交AP于点F,且∠AFC=45°,连接AG交抛物线于T,求点T的坐标.
2.(2022•沈阳模拟)如图1,在平面直角坐标系中.抛物线y=ax2+bx+2与x轴交于A(﹣4,0)和B(1,0),与y轴交于点C,连接AC,BC.
(1)求该抛物线的解析式;
(2)如图2,点M为直线AC上方的抛物线上任意一点,过点M作y轴的平行线,交AC于点N,过点M作x轴的平行线,交直线AC于点Q,求△MNQ周长的最大值;
(3)点P为抛物线上的一动点,且∠ACP=45°﹣∠BAC,请直接写出满足条件的点P的坐标.
3.(2022•沈阳模拟)如图1,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于A,B两点(点B在点A的右边),点A坐标为(1,0),抛物线与y轴交于点C,S△ABC=3.
(1)求抛物线的函数表达式;
(2)点P(x,y)是抛物线上一动点,且x>3.作PN⊥BC于N,设PN=d,求d与x的函数关系式;
(3)在(2)的条件下,过点A作PC的平行线交y轴于点F,连接BF,在直线AF上取点E,连接PE,使PE=2BF,且∠PEF+∠BFE=180°,请直接写出P点坐标.
4.(2022•成都模拟)如图,已知抛物线表达式为y=ax2﹣ax﹣2a+1(a≠0),直线y=x+与坐标轴交于点A,B.
(1)若该抛物线过原点,求抛物线的表达式.
(2)试说明无论a为何值,抛物线一定经过两个定点,并求出这两个定点的坐标.点P为两定点所在直线上的动点,当点P到点A的距离和到直线AB的距离之和最小时,求点P的坐标;
(3)点N是抛物线上一动点,点M(﹣4,0),且∠NMA+∠OBA=90°,若满足条件的点N的个数恰好为3个,求a的值.
5.(2022•成都模拟)如图1所示,直线y=x+3与x轴、y轴分别相交于点A,点B,点C(1,2)在经过点A,B的二次函数y=ax2+bx+c的图象上.
(1)求抛物线的解析式;
(2)点P为线段AB上(不与端点重合)的一动点,过点P作PQ∥y轴交抛物线于点Q,求PQ+PB取得最大值时点P的坐标;
(3)如图2,连接BC并延长,交x轴于点D,E为第三象限抛物线上一点,连接DE,点G为x轴上一点,且G(﹣1,0),直线CG与DE交于点F,点H在线段CF上,且∠CFD+∠ABH=45°,连接BH交OA于点M,已知∠GDF=∠HBO,求点H的坐标.
6.(2022•洪山区模拟)如图,在平面直角坐标系中,抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,3),与直线l:y=k(x﹣3)+3(k>0)交于D,E两点.
(1)求抛物线的解析式;
(2)如图1,连接BD,若△BDE的面积为6,求k的值;
(3)如图2,若直线l与抛物线交于M,N两点,与BC交于点P,且∠MBC=∠NBC.求P点的坐标.
7.(2022•洪山区模拟)抛物线y=ax2﹣2ax﹣3a与x轴交于A、B两点(点A在点B的左边),与y轴的正半轴交于C点,△ABC的面积为6.
(1)直接写出点A、B的坐标为 ;抛物线的解析式为 .
(2)如图1,连结AC,若在第一象限抛物线上存在点D,使点D到直线AC的距离为,求点D的坐标;
(3)如图2,平行于AC的直线交抛物线于M、N两点,在抛物线上存在点P,当PQ⊥y轴时,PQ恰好平分∠MPN,求P点坐标.
8.(2022•泰安模拟)如图,抛物线y=mx2+3mx﹣2m+1的图象经过点C,交x轴于点A(x1,0),B(x2,0)(点A在点B左侧),且x2﹣x1=5,连接BC,D是AC上方的抛物线一点.
(1)求抛物线的解析式;
(2)连接BC,CD,S△DCE:S△BCE是否存在最大值?若存在,请求出其最大值及此时点D的坐标;若不存在,请说明理由;
(3)第二象限内抛物线上是否存在一点D,DF垂直AC于点F,使得△DCF中有一个锐角等于∠BAC的两倍?若存在,求点D的横坐标,若不存在,请说明理由.
9.(2022•青山区模拟)抛物线y=x2+(t﹣2)x﹣2t(t>0)与x轴交于A、B两点(A在B左边),与y轴交于点 C.
(1)直接写出A点坐标 、B点坐标 、C点坐标 ;
(2)如图1,直线y=kx+b与抛物线交于M、N两点(M不与A重合,M在N左边),连接MA,作NH⊥x轴于点H,过点H作HP∥MA交y轴于点P,PH交MN于点Q,求点Q的横坐标;
(3)如图2,直线y=d(d>0)与抛物线交于第二象限点D,若∠ADB=45°,求d﹣t的值.
10.(2022•丹阳市二模)如图所示,抛物线y=﹣x2+bx+3经过点B(3,0),与x轴交于另一点A,与y轴交于点C.
(1)求抛物线所对应的函数表达式;
(2)如图,设点D是x轴正半轴上一个动点,过点D作直线l⊥x轴,交直线BC于点E,交抛物线于点F,连接AC、FC.
①若点F在第一象限内,当∠BCF=∠BCA时,求点F的坐标;
②若∠ACO+∠FCB=45°,则点F的横坐标为 .
11.(2022•东港区校级一模)如图1,抛物线y=ax2+bx+3经过A(1,0)、B(3,0)两点,与y轴交于点C,
(1)求抛物线的函数解析式;
(2)如图2,M是x轴下方的抛物线上一点,连接MO、MB、MC,若△MOC的面积是△MBC面积的3倍,求点M的坐标;
(3)如图3,连接AC、BC,在抛物线上是否存在一点N(不与点A重合),使得∠BCN=∠ACB?若存在,求点N的横坐标;若不存在,请说明理由.
12.(2022•宁津县模拟)如图,抛物线与x轴交于点A和点C(﹣1,0),与y轴交于点B(0,3),连接AB,BC,对称轴PD交AB与点E.
(1)求抛物线的解析式;
(2)如图2,试探究:线段BC上是否存在点M,使∠EMO=∠ABC,若存在,求出点M的坐标;若不存在,请说明理由;
(3)如图3,点Q是抛物线的对称轴PD上一点,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围.
13.(2022•南山区模拟)已知抛物线y=ax2+bx+c(a﹣1不为整数)的顶点D(,),AB⊥BC.
(1)直接得出抛物线解析式.
(2)如图1所示,点P为抛物线一动点,∠PBC=3∠ABO,求xP;
(3)如图2,延长DB交x轴于点E,EF平分∠BEO,交线段AB于点F.x轴正半轴有一点S,且AS=12EF.过点F作FG∥x轴,交抛物线的对称轴于点G.该对称轴交x轴于点H.过点G作线段IM、NQ,且NH=MH=IH=QH.线段IQ交直线FG于点R,若线段MN恰好交FG于点F.那么请求出R点坐标.并试问∠EFA与∠RSE是否存在倍数关系?若存在,请分别求出它们的角度大小并写出存在的倍数关系;若不存在,请说明理由.
14.(2022•大连二模)抛物线y=x2﹣4x+c与直线I:y=kx交于点G(1,m)和点H,﹣1≤m<0,直线x=m﹣1交直线l于点A,交抛物线于点B.
(1)求c和k的值(用含m的代数式表示);
(2)过点A作x轴的平行线交抛物线于M,N两点(M在N的左侧),交y轴于点C.求的取值范围;
(3)在(2)的条件下,过点B作x轴的平行线,与抛物线另一个交点为D,若点E是线段BD的中点,探究∠MEN与∠ABC的数量关系,并说明理由.
15.(2022•新抚区模拟)如图,直线y=mx+n与抛物线y=﹣x2+bx+c交于A(﹣2,0),B(2,2)两点,直线AB与y轴交于点C.
(1)求抛物线与直线AB的解析式;
(2)点P在抛物线上,直线PC交x轴于Q,连接PB,当△PBC的面积是△ACQ面积的2倍时,求点P的坐标;
(3)点M为坐标轴上的动点,当∠AMB=45°时,直接写出点M的坐标.
16.(2022•铁岭模拟)如图1,抛物线y=ax2﹣x+c与x轴交于A(﹣2,0)、B(4,0)两点,与y轴交于点C,直线l与抛物线交于A、D两点,其中D点的横坐标为2.
(1)求抛物线的解析式以及直线AD的解析式;
(2)点P是抛物线上位于直线AD下方的动点,过点P作x轴,y轴的平行线,交AD于点E、F,当PE+PF取最大值时,求点P的坐标;
(3)如图2,连接AC,点Q在抛物线上,且满足∠QAB=2∠ACO,求点的坐标.
17.(2022•平房区二模)如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+4与x轴交于点A、B(点A在点B左侧),与y轴交于点C,直线y=﹣x+4经过B、C两点,OB=4OA.
(1)求抛物线的解析式;
(2)如图2,点P为第四象限抛物线上一点,过点P作PD⊥x轴交BC于点D,垂足为N,连接PC交x轴于点E,设点P的横坐标为t,△PCD的面积为S,求S与t的函数关系式;
(3)在(2)的条件下,如图3,过点P作PF⊥PC交y轴于点F,PF=PE.点G在抛物线上,连接PG,∠CPG=45°,连接BG,求直线BG的解析式.
18.(2022•新民市一模)如图,已知抛物线y=﹣x2+bx+c经过点A(0,2),B(8,0),点D是第一象限抛物线上的一点,CD⊥AB于点C.
(1)直接写出抛物线的表达式 ;
(2)如图1,当CD取得最大值时,求点D的坐标,并求CD的最大值;
(3)如图2,点D满足(2)的条件,点P在x轴上,且∠APD=45°,直接写出点P的横坐标 .
19.(2022•大庆二模)如图,抛物线y=mx2+(m2+3)x﹣(6m+9)与x轴交于点A,B,与y轴交于点C,已知点B(3,0).
(1)求直线BC及抛物线的函数表达式;
(2)P为x轴上方抛物线上一点.
①若S△PBC=S△ABC,请直接写出点P的坐标;
②如图,PD∥y轴交BC于点D,DE∥x轴交AC于点E,求PD+DE的最大值;
(3)Q为抛物线上一点,若∠ACQ=45°,求点Q的坐标.
20.(2022•运城二模)如图,已知抛物线y=ax2+bx﹣8与x轴交于点A(﹣2,0),B(8,0)两点,与y轴交于点C,点P是直线BC下方抛物线上一动点,过点P作直线PE∥y轴,交直线BC于点D,交x轴于点F,以PD为斜边,在PD的右侧作等腰直角△PDF.
(1)求抛物线的表达式,并直接写出直线BC的表达式;
(2)设点P的横坐标为m(0<m<3),在点P运动的过程中,当等腰直角△PDF的面积为9时,请求出m的值;
(3)连接AC,该抛物线上是否存在一点M,使∠ACO+∠BCM=∠ABC,若存在,请直接写出所有符合条件的点M的坐标,若不存在,请说明理由.
21.(2022•永安市模拟)已知二次函数y=x2+(k﹣2)x﹣2k.
(1)当此二次函数的图象与x轴只有一个交点时,求该二次函数的解析式;
(2)当k>0时,直线y=kx十2交抛物线于A,B两点(点A在点B的左侧),点P在线段AB上,过点P做PM垂直x轴于点M,交抛物线于点N.
①求PN的最大值(用含k的代数式表示);
②若抛物线与x轴交于E,F两点,点E在点F的左侧.在直线y=kx+2上是否存在唯一一点Q,使得∠EQO=90°?若存在,请求出此时k的值;若不存在,请说明理由.
22.(2022•南岗区三模)在平面直角坐标系中,点O为坐标系的原点,经过点B(3,6)的抛物线与x轴的正半轴交于点A.
(1)求抛物线的解析式;
(2)如图1,点P为第一象限抛物线上的一点,且点P在抛物线对称轴的右侧,连接OP,AP,设点P的横坐标为t,△OPA的面积为S,求S与t的函数解析式(不要求写出自变量t的取值范围);
(3)如图2,在(2)的条件下,当时,连接BP,点C为线段OA上的一点,过点C作x轴的垂线交BP的延长线于点D,连接OD,BC,若,求点C的坐标.
23.(2022•同安区二模)已知抛物线y=ax2+bx+c(a<0)过点A(﹣1,0)和C(0,3),与x轴交于另一点B,顶点为D.
(1)求a、b满足的关系式;
(2)对于抛物线上的任意两点P1(x1,y1),P2(x2,y2),当y1=y2时,恒有|x1﹣1|=|x2﹣1|.
①求抛物线解析式;
②AC与BD的延长线交于点H,在x轴上方的抛物线上是否存在点P,使得∠OPB=∠AHB.若存在,求出一个符合条件的点P的坐标;若不存在,请说明理由.
24.(2022•伊宁市模拟)抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(3,0),与y轴交于点C.
(1)求该抛物线的函数表达式;
(2)如图1,点M是第一象限内抛物线上一动点,过点M作MF⊥x轴于点F,作ME⊥y轴于点E,当矩形MEOF周长最大时,求M点坐标.
(3)如图2,点P是该抛物线上一动点,连接PC,AC,直接写出使得∠PCB=∠ACO时点P的坐标.
相关试卷
这是一份专题16二次函数与动点综合问题-(学生版)-拔尖2023中考数学压轴题突破(全国通用),共15页。
这是一份专题15二次函数与角综合问题(教师版)-拔尖2023中考数学压轴题突破(全国通用),共96页。试卷主要包含了角的数量关系问题,角的最值问题等内容,欢迎下载使用。
这是一份专题11二次函数与单线段最值问题-(学生版)-拔尖2023中考数学压轴题突破(全国通用),共15页。