2024年高考押题预测卷—数学(广东专用03,新题型结构)(考试版)
展开
这是一份2024年高考押题预测卷—数学(广东专用03,新题型结构)(考试版),共6页。
数 学
(考试时间:120分钟 试卷满分:150分)
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共58分)
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,若,则满足集合的个数为( )
A.4B.6C.7D.8
2.若复数的实部为,则点的轨迹是( )
A.直径为2的圆B.实轴长为2的双曲线
C.直径为1的圆D.虚轴长为2的双曲线
3.《天工开物》是我国明代科学家宋应星所著的一部综合性科学技术著作,书中记载了一种制造瓦片的方法.某校高一年级计划实践这种方法,为同学们准备了制瓦用的粘土和圆柱形的木质圆桶,圆桶底面外圆的直径为,高为.首先,在圆桶的外侧面均匀包上一层厚度为的粘土,然后,沿圆桶母线方向将粘土层分割成四等份(如图),等粘土干后,即可得到大小相同的四片瓦.每位同学制作四片瓦,全年级共500人,需要准备的粘土量(不计损耗)与下列哪个数字最接近.(参考数据:)( )
A.B.C.D.
4.某校组织校庆活动,负责人将任务分解为编号为的四个子任务,并将任务分配给甲、乙、丙3人,且每人至少分得一个子任务,则甲没有分到编号为的子任务的分配方法共有( )
A.12种B.18种C.24种D.36种
5.已知函数的图象如图所示,则的解析式可能是( )
A.B.
C.D.
6.当,时,.这个基本不等式可以推广为当x,时,,其中 且,.考虑取等号的条件,进而可得当时,.用这个式子估计可以这样操作:,则.用这样的方法,可得的近似值为( )
A.3.033B.3.035C.3.037D.3.039
7.分形几何学是美籍法国数学家伯努瓦-曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立为解决传统科学领域的众多难题提供了全新的思路.下图展示了如何按照图①的分形规律生长成一个图②的树形图,则在图②中第2023行的黑心圈的个数是( )
A.B.
C.D.
8.记椭圆:与圆:的公共点为,,其中在的左侧,是圆上异于,的点,连接交于,若,则的离心率为( )
A.B.C.D.
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.下列说法中,正确的是( )
A.一组数据的第40百分位数为12
B.若样本数据的方差为8,则数据的方差为2
C.已知随机变量服从正态分布,若,则
D.在独立性检验中,零假设为:分类变量和独立.基于小概率值的独立性检验规则是:当时,我们就推断不成立,即认为和不独立,该推断犯错误的概率不超过;当时,我们没有充分证据推断不成立,可以认为和独立
10.已知函数的定义域为,不恒为零,且,则( )
A.
B.为偶函数
C.在处取得极小值
D.若,则
11.如图,平面,,M为线段AB的中点,直线MN与平面的所成角大小为30°,点P为平面内的动点,则( )
A.以为球心,半径为2的球面在平面上的截痕长为
B.若P到点M和点N的距离相等,则点P的轨迹是一条直线
C.若P到直线MN的距离为1,则的最大值为
D.满足的点P的轨迹是椭圆
第二部分(非选择题 共92分)
三、填空题:本题共3小题,每小题5分,共15分。
12.若向量,,//,则 .
13.在中,,,,点在线段AB的延长线上,且,则 .
14.在平面直角坐标系中,O为坐标原点,定义、两点之间的“直角距离”为.已知两定点,,则满足的点M的轨迹所围成的图形面积为 .
四、解答题:本题共5小题,共77分。解答应写出文字说明、证明过程或演算步棸。
15.(13分)
甲、乙两人进行中国象棋比赛,采用五局三胜制,假设他们没有平局的情况,甲每局赢的概率均为,且每局的胜负相互独立,
(1)求该比赛三局定胜负的概率;
(2)在甲赢第一局的前提下,设该比赛还需要进行的局数为,求的分布列与数学期望.
16.(15分)
如图,在圆台中,为轴截面,为下底面圆周上一点,为下底面圆内一点,垂直下底面圆于点.
(1)求证:平面平面;
(2)若为等边三角形,求平面和平面的交线与平面所成角的正弦值.
17.(15分)
在个数码构成的一个排列中,若一个较大的数码排在一个较小的数码的前面,则称它们构成逆序(例如,则与构成逆序),这个排列的所有逆序的总个数称为这个排列的逆序数,记为,例如,,
(1)计算;
(2)设数列满足,求的通项公式;
(3)设排列满足,求,
18.(17分)
已知双曲线的焦距为,点在上.
(1)求的方程;
(2)直线与的右支交于,两点,点与点关于轴对称,点在轴上的投影为点.
(ⅰ)求的取值范围;
(ⅱ)求证:直线过点.
19.(17分)
已知函数.
(1)当时,求函数在处的切线方程;
(2)时;
(ⅰ)若,求的取值范围;
(ⅱ)证明:.
相关试卷
这是一份2024年高考押题预测卷—数学(广东专用02,新题型结构)(全解全析),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年高考押题预测卷—数学(广东专用02,新题型结构)(考试版),共6页。
这是一份2024年高考押题预测卷—数学(广东专用02,新题型结构)(参考答案),共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。