所属成套资源:2024年中考数学二轮题型突破(全国通用)
- 题型8 函数的实际应用(复习讲义)-2024年中考数学二轮题型突破(全国通用) 试卷 0 次下载
- 题型9 二次函数综合题 类型2 二次函数与线段有关的问题27题(专题训练)-2024年中考数学二轮题型突破(全国通用) 试卷 0 次下载
- 题型9 二次函数综合题 类型4 二次函数与角度有关的问题12题(专题训练)-2024年中考数学二轮题型突破(全国通用) 试卷 0 次下载
- 题型9 二次函数综合题 类型5 二次函数与三角形全等、相似(位似)有关的问题(专题训练)-2024年中考数学二轮题型突破(全国通用) 试卷 0 次下载
- 题型9 二次函数综合题 类型6 二次函数与等腰三角形有关的问题(专题训练)-2024年中考数学二轮题型突破(全国通用) 试卷 0 次下载
题型9 二次函数综合题 类型3 二次函数与面积有关的问题25题(专题训练)-2024年中考数学二轮题型突破(全国通用)
展开
这是一份题型9 二次函数综合题 类型3 二次函数与面积有关的问题25题(专题训练)-2024年中考数学二轮题型突破(全国通用),文件包含题型9二次函数综合题类型3二次函数与面积有关的问题25题专题训练教师版docx、题型9二次函数综合题类型3二次函数与面积有关的问题25题专题训练学生版docx等2份试卷配套教学资源,其中试卷共95页, 欢迎下载使用。
(1)求二次函数的表达式;
(2)求四边形的面积;
(3)P是抛物线上的一点,且在第一象限内,若,求P点的坐标.
2.(2023·山东东营·统考中考真题)如图,抛物线过点,,矩形的边在线段上(点B在点A的左侧),点C,D在抛物线上,设,当时,.
(1)求抛物线的函数表达式;
(2)当t为何值时,矩形的周长有最大值?最大值是多少?
(3)保持时的矩形不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G,H,且直线平分矩形的面积时,求抛物线平移的距离.
3.已知二次函数,其中.
(1)当该函数的图像经过原点,求此时函数图像的顶点的坐标;
(2)求证:二次函数的顶点在第三象限;
(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线上运动,平移后所得函数的图像与轴的负半轴的交点为,求面积的最大值.
4.(2023·安徽·统考中考真题)在平面直角坐标系中,点是坐标原点,抛物线经过点,对称轴为直线.
(1)求的值;
(2)已知点在抛物线上,点的横坐标为,点的横坐标为.过点作轴的垂线交直线于点,过点作轴的垂线交直线于点.
(ⅰ)当时,求与的面积之和;
(ⅱ)在抛物线对称轴右侧,是否存在点,使得以为顶点的四边形的面积为?若存在,请求出点的横坐标的值;若不存在,请说明理由.
5.如图,在平面直角坐标系中,二次函数的图像与x轴交于点.、,与y轴交于点C.
(1)________,________;
(2)若点D在该二次函数的图像上,且,求点D的坐标;
(3)若点P是该二次函数图像上位于x轴上方的一点,且,直接写出点P的坐标.
6.(2023·湖南·统考中考真题)如图,二次函数的图象与轴交于,两点,与轴交于点,其中,.
(1)求这个二次函数的表达式;
(2)在二次函数图象上是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由;
(3)点是对称轴上一点,且点的纵坐标为,当是锐角三角形时,求的取值范围.
7.(2023·四川遂宁·统考中考真题)在平面直角坐标系中,为坐标原点,抛物线经过点,,对称轴过点,,直线过点,且垂直于轴.过点的直线交抛物线于点、,交直线于点,其中点、Q在抛物线对称轴的左侧.
(1)求抛物线的解析式;
(2)如图1,当时,求点的坐标;
(3)如图2,当点恰好在轴上时,为直线下方的抛物线上一动点,连接、,其中交于点,设的面积为,的面积为.求的最大值.
8.如图,在平面直角坐标系中,抛物线的图象与坐标轴相交于、、三点,其中点坐标为,点坐标为,连接、.动点从点出发,在线段上以每秒个单位长度向点做匀速运动;同时,动点从点出发,在线段上以每秒1个单位长度向点做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接,设运动时间为秒.
(1)求、的值;
(2)在、运动的过程中,当为何值时,四边形的面积最小,最小值为多少?
(3)在线段上方的抛物线上是否存在点,使是以点为直角顶点的等腰直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.
9.(2023·江西·统考中考真题)综合与实践
问题提出:某兴趣小组开展综合实践活动:在中,,D为上一点,,动点P以每秒1个单位的速度从C点出发,在三角形边上沿匀速运动,到达点A时停止,以为边作正方形设点P的运动时间为,正方形的而积为S,探究S与t的关系
(1)初步感知:如图1,当点P由点C运动到点B时,
①当时,_______.
②S关于t的函数解析式为_______.
(2)当点P由点B运动到点A时,经探究发现S是关于t的二次函数,并绘制成如图2所示的图象请根据图象信息,求S关于t的函数解析式及线段的长.
(3)延伸探究:若存在3个时刻()对应的正方形的面积均相等.
①_______;
②当时,求正方形的面积.
10.如图,在平面直角坐标系中,抛物线与x轴交于点,,与y轴交于点C.
(1)求该抛物线的解析式;
(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点P为直线AD下方抛物线上一动点,连接PA,PD,求面积的最大值;
(3)在(2)的条件下,将抛物线沿射线AD平移个单位,得到新的抛物线,点E为点P的对应点,点F为的对称轴上任意一点,在上确定一点G,使得以点D,E,F,G为顶点的四边形是平行四边形,写出所有符合条件的点G的坐标,并任选其中一个点的坐标,写出求解过程.
11.(2023·湖南永州·统考中考真题)如图1,抛物线(,,为常数)经过点,顶点坐标为,点为抛物线上的动点,轴于H,且.
(1)求抛物线的表达式;
(2)如图1,直线交于点,求的最大值;
(3)如图2,四边形为正方形,交轴于点,交的延长线于,且,求点的横坐标.
12.如图,已知二次函数y=﹣x2+(a+1)x﹣a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知△BAC的面积是6.
(1)求a的值;
(2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在请求出P坐标,若不存在请说明理由.
13.(2023·山西·统考中考真题)如图,二次函数的图象与轴的正半轴交于点A,经过点A的直线与该函数图象交于点,与轴交于点C.
(1)求直线的函数表达式及点C的坐标;
(2)点是第一象限内二次函数图象上的一个动点,过点作直线轴于点,与直线交于点D,设点的横坐标为.
①当时,求的值;
②当点在直线上方时,连接,过点作轴于点,与交于点,连接.设四边形的面积为,求关于的函数表达式,并求出S的最大值.
17.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.
(1)求此抛物线的表达式;
(2)若PC∥AB,求点P的坐标;
(3)连接AC,求△PAC面积的最大值及此时点P的坐标.
15.(2023·湖北黄冈·统考中考真题)已知抛物线与x轴交于两点,与y轴交于点,点P为第一象限抛物线上的点,连接.
(1)直接写出结果;_____,_____,点A的坐标为_____,______;
(2)如图1,当时,求点P的坐标;
(3)如图2,点D在y轴负半轴上,,点Q为抛物线上一点,,点E,F分别为的边上的动点,,记的最小值为m.
①求m的值;
②设的面积为S,若,请直接写出k的取值范围.
15.若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;
(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.
①当m=12时,求点P的坐标;
②求m的最大值.
17.(2023·湖南·统考中考真题)如图,在平面直角坐标系中,抛物线经过点和点,且与直线交于两点(点在点的右侧),点为直线上的一动点,设点的横坐标为.
(1)求抛物线的解析式.
(2)过点作轴的垂线,与拋物线交于点.若,求面积的最大值.
(3)抛物线与轴交于点,点为平面直角坐标系上一点,若以为顶点的四边形是菱形,请求出所有满足条件的点的坐标.
18.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(-2,0),直线BC的解析式为y=-23x+2.
(1)求抛物线的解析式;
(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;
(3)将抛物线y=ax2+bx+2(a≠0)向左平移2个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.
19.(2023·山东聊城·统考中考真题)如图①,抛物线与x轴交于点,,与y轴交于点C,连接AC,BC.点P是x轴上任意一点.
(1)求抛物线的表达式;
(2)点Q在抛物线上,若以点A,C,P,Q为顶点,AC为一边的四边形为平行四边形时,求点Q的坐标;
(3)如图②,当点从点A出发沿x轴向点B运动时(点P与点A,B不重合),自点P分别作,交AC于点E,作,垂足为点D.当m为何值时,面积最大,并求出最大值.
20.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(﹣3,﹣4),B(0,﹣1).
(1)求该抛物线的函数表达式;
(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求△PAB面积的最大值;
(3)将该抛物线向右平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.
21.(2023·湖北荆州·统考中考真题)已知:关于的函数.
(1)若函数的图象与坐标轴有两个公共点,且,则的值是___________;
(2)如图,若函数的图象为抛物线,与轴有两个公共点,,并与动直线交于点,连接,,,,其中交轴于点,交于点.设的面积为,的面积为.
①当点为抛物线顶点时,求的面积;
②探究直线在运动过程中,是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.
22.已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD=43,如图所示.
(1)求抛物线的解析式;
(2)设P是抛物线的对称轴上的一个动点.
①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,求△BCF的面积的最大值;
②连结PB,求35PC+PB的最小值.
23.如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.
(1)求抛物线的解析式;
(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;
(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.
24.如图,在平面直角坐标系xOy中,已知直线y=12x﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点P,使S△PAB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由;
(3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN+12ON的最小值.
25.已知:直线与轴、轴分别交于、两点,点为直线上一动点,连接,为锐角,在上方以为边作正方形,连接,设.
(1)如图1,当点在线段上时,判断与的位置关系,并说明理由;
(2)真接写出点的坐标(用含的式子表示);
(3)若,经过点的抛物线顶点为,且有,的面积为.当时,求抛物线的解析式.
相关试卷
这是一份题型九 二次函数综合题 类型四 二次函数与角度有关的问题12题(专题训练)-中考数学二轮复习满分冲刺题型突破(全国通用),文件包含题型九二次函数综合题类型四二次函数与角度有关的问题12题专题训练原卷版docx、题型九二次函数综合题类型四二次函数与角度有关的问题12题专题训练解析版docx等2份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
这是一份题型九 二次函数综合题 类型十一 二次函数与正方形有关的问题(专题训练)-中考数学二轮复习满分冲刺题型突破(全国通用),文件包含题型九二次函数综合题类型十一二次函数与正方形有关的问题专题训练原卷版docx、题型九二次函数综合题类型十一二次函数与正方形有关的问题专题训练解析版docx等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
这是一份题型九 二次函数综合题 类型十 二次函数与矩形有关的问题(专题训练)-中考数学二轮复习满分冲刺题型突破(全国通用),文件包含题型九二次函数综合题类型十二次函数与矩形有关的问题专题训练原卷版docx、题型九二次函数综合题类型十二次函数与矩形有关的问题专题训练解析版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。