|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年中考数学必考考点专题24 平行四边形篇(解析版)
    立即下载
    加入资料篮
    2024年中考数学必考考点专题24 平行四边形篇(解析版)01
    2024年中考数学必考考点专题24 平行四边形篇(解析版)02
    2024年中考数学必考考点专题24 平行四边形篇(解析版)03
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年中考数学必考考点专题24 平行四边形篇(解析版)

    展开
    这是一份2024年中考数学必考考点专题24 平行四边形篇(解析版),共19页。


    平行四边形的定义:
    两组对边分别平行的四边形叫做平行四边形。
    平行四边形的性质:
    ①边的性质:两组对边分别平行且相等。
    ②角的性质:对角相等,邻角互补。
    ③对角线的性质:对角线相互平分。即对角线交点是两条对角线的中点。
    ④对称性:平行四边形是一个中心对称图形,绕对角线交点旋转180°与原图形重合。
    ⑤面积计算:等于底乘底边上的高。等底等高的两个平行四边形的面积相等。
    平行线间的距离:
    平行线间的距离处处相等。
    微专题
    1.(2022•朝阳)将一个三角尺按如图所示的方式放置在一张平行四边形的纸片上,∠EFG=90°,∠EGF=60°,∠AEF=50°,则∠EGC的度数为( )
    A.100°B.80°C.70°D.60°
    【分析】由平行四边形的性质可得AB∥DC,再根据三角形内角和定理,即可得到∠GEF的度数,依据平行线的性质,即可得到∠EGC的度数.
    【解答】解:∵四边形ABCD是平行四边形,
    ∴AB∥DC,
    ∴∠AEG=∠EGC,
    ∵∠EFG=90°,∠EGF=60°,
    ∴∠GEF=30°,
    ∴∠GEA=80°,
    ∴∠EGC=80°.
    故选:B.
    2.(2022•内江)如图,在▱ABCD中,已知AB=12,AD=8,∠ABC的平分线BM交CD边于点M,则DM的长为( )
    A.2B.4C.6D.8
    【分析】由平行四边形的得CD=AB=12,BC=AD=8,AB∥CD,再证∠CBM=∠CMB,则MC=BC=8,即可得出结论.
    【解答】解:∵四边形ABCD是平行四边形,
    ∴CD=AB=12,BC=AD=8,AB∥CD,
    ∴∠ABM=∠CMB,
    ∵BM是∠ABC的平分线,
    ∴∠ABM=∠CBM,
    ∴∠CBM=∠CMB,
    ∴MC=BC=8,
    ∴DM=CD﹣MC=12﹣8=4,
    故选:B.
    3.(2022•大庆)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在E处.若∠1=56°,∠2=42°,则∠A的度数为( )
    A.108°B.109°C.110°D.111°
    【分析】由平行四边形的性质和折叠的性质得∠ABD=∠CDB=∠EBD,再由三角形的外角性质得∠ABD=∠CDB=28°,然后由三角形内角和定理即可得出结论.
    【解答】解:∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠ABD=∠CDB,
    由折叠的性质得:∠EBD=∠ABD,
    ∴∠ABD=∠CDB=∠EBD,
    ∵∠1=∠CDB+∠EBD=56°,
    ∴∠ABD=∠CDB=28°,
    ∴∠A=180°﹣∠2﹣∠ABD=180°﹣42°﹣28°=110°,
    故选:C.
    4.(2022•广东)如图,在▱ABCD中,一定正确的是( )
    A.AD=CDB.AC=BDC.AB=CDD.CD=BC
    【分析】根据平行四边形的性质即可得出答案.
    【解答】解:∵四边形ABCD是平行四边形,
    ∴AB=CD,
    故选:C.
    5.(2022•无锡)如图,在▱ABCD中,AD=BD,∠ADC=105°,点E在AD上,∠EBA=60°,则的值是( )
    A.B.C.D.
    【分析】由等腰三角形的性质可求∠ADB=30°,∠DAB=75°,由直角三角形的性质和勾股定理可求CD,DE的长,即可求解.
    【解答】解:如图,过点B作BH⊥AD于H,
    设∠ADB=x,
    ∵四边形ABCD是平行四边形,
    ∴BC∥AD,∠ADC=∠ABC=105°,
    ∴∠CBD=∠ADB=x,
    ∵AD=BD,
    ∴∠DBA=∠DAB=,
    ∴x+=105°,
    ∴x=30°,
    ∴∠ADB=30°,∠DAB=75°,
    ∵BH⊥AD,
    ∴BD=2BH,DH=BH,
    ∵∠EBA=60°,∠DAB=75°,
    ∴∠AEB=45°,
    ∴∠AEB=∠EBH=45°,
    ∴EH=BH,
    ∴DE=BH﹣BH=(﹣1)BH,
    ∵AB===(﹣)BH=CD,
    ∴=,
    故选:D.
    6.(2022•湘潭)在▱ABCD中(如图),连接AC,已知∠BAC=40°,∠ACB=80°,则∠BCD=( )
    A.80°B.100°C.120°D.140°
    【分析】根据平行线的性质可求得∠ACD,即可求出∠BCD.
    【解答】解:∵四边形ABCD是平行四边形,∠BAC=40°,
    ∴AB∥CD,
    ∴∠ACD=∠BAC=40°,
    ∵∠ACB=80°,
    ∴∠BCD=∠ACB+∠ACD=120°,
    故选:C.
    7.(2022•乐山)如图,在平行四边形ABCD中,过点D作DE⊥AB,垂足为E,过点B作BF⊥AC,垂足为F.若AB=6,AC=8,DE=4,则BF的长为( )
    A.4B.3C.D.2
    【分析】根据平行四边形的性质可得S△ABC=S平行四边形ABCD,结合三角形及平行四边形的面积公式计算可求解.
    【解答】解:在平行四边形ABCD中,S△ABC=S平行四边形ABCD,
    ∵DE⊥AB,BF⊥AC,
    ∴,
    ∵AB=6,AC=8,DE=4,
    ∴8BF=6×4,
    解得BF=3,
    故选:B.
    8.(2022•淮安)如图,在▱ABCD中,CA⊥AB,若∠B=50°,则∠CAD的度数是 .
    【分析】由平行四边形的性质得AD∥BC,则∠CAD=∠ACB,再由直角三角形的性质得∠ACB=90°﹣∠B=40°,即可得出结论.
    【解答】解:∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠CAD=∠ACB,
    ∵CA⊥AB,
    ∴∠BAC=90°,
    ∵∠B=50°,
    ∴∠ACB=90°﹣∠B=40°,
    ∴∠CAD=∠ACB=40°,
    故答案为:40°.
    9.(2022•广州)如图,在▱ABCD中,AD=10,对角线AC与BD相交于点O,AC+BD=22,则△BOC的周长为 .
    【分析】根据平行四边形对角线互相平分,求出OC+OB的长,即可解决问题.
    【解答】解:∵四边形ABCD是平行四边形,
    ∴AO=OC=AC,BO=OD=BD,AD=BC=10,
    ∵AC+BD=22,
    ∴OC+BO=11,
    ∴△BOC的周长=OC+OB+BC=11+10=21.
    故答案为:21.
    10.(2022•荆州)如图,点E,F分别在▱ABCD的边AB,CD的延长线上,连接EF,分别交AD,BC于G,H.添加一个条件使△AEG≌△CFH,这个条件可以是 .(只需写一种情况)
    【分析】由平行四边形的性质得出AB∥CD,∠A=∠C,AB=CD,根据全等三角形的判定可得出结论.
    【解答】解:添加BE=DF.
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,∠A=∠C,AB=CD,
    ∴∠E=∠F,
    ∵BE=DF,
    ∴BE+AB=CD+DF,
    即AE=CF,
    在△AEG和△CFH中,

    ∴△AEG≌△CFH(ASA).
    故答案为:BE=DF(答案不唯一).
    11.(2022•常德)如图,已知F是△ABC内的一点,FD∥BC,FE∥AB,若▱BDFE的面积为2,BD=BA,BE=BC,则△ABC的面积是 .
    【分析】连接DE,CD,由平行四边形的性质可求S△BDE=1,结合BE=BC可求解S△BDC=4,再利用BD=BA可求解△ABC的面积.
    【解答】解:连接DE,CD,
    ∵四边形BEFD为平行四边形,▱BDFE的面积为2,
    ∴S△BDE=S▱BDFE=1,
    ∵BE=BC,
    ∴S△BDC=4S△BDE=4,
    ∵BD=BA,
    ∴S△ABC=3S△BDC=12,
    故答案为:12.
    12.(2022•苏州)如图,在平行四边形ABCD中,AB⊥AC,AB=3,AC=4,分别以A,C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF,则四边形AECF的周长为 .
    【分析】根据勾股定理得到BC==5,由作图可知,MN是线段AC的垂直平分线,求得EC=EA,AF=CF,推出AE=CE=BC=2.5,根据平行四边形的性质得到AD=BC=5,CD=AB=3,∠ACD=∠BAC=90°,同理证得AF=CF=2.5,于是得到结论.
    【解答】解:∵AB⊥AC,AB=3,AC=4,
    ∴BC==5,
    由作图可知,MN是线段AC的垂直平分线,
    ∴EC=EA,AF=CF,
    ∴∠EAC=∠ACE,
    ∵∠B+∠ACB=∠BAE+∠CAE=90°,
    ∴∠B=∠BAE,
    ∴AE=BE,
    ∴AE=CE=BC=2.5,
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=5,CD=AB=3,∠ACD=∠BAC=90°,
    同理证得AF=CF=2.5,
    ∴四边形AECF的周长=EC+EA+AF+CF=10,
    故答案为:10.
    13.(2022•邵阳)如图,在等腰△ABC中,∠A=120°,顶点B在▱ODEF的边DE上,已知∠1=40°,则∠2= .
    【分析】根据等腰三角形的性质和平行四边形的性质解答即可.
    【解答】解:∵等腰△ABC中,∠A=120°,
    ∴∠ABC=30°,
    ∵∠1=40°,
    ∴∠ABE=∠1+∠ABC=70°,
    ∵四边形ODEF是平行四边形,
    ∴OF∥DE,
    ∴∠2=180°﹣∠ABE=180°﹣70°=110°,
    故答案为:110°.
    14.(2022•泰安)如图,四边形ABCD为平行四边形,则点B的坐标为 .
    【分析】直接根据平移的性质可解答.
    【解答】解:∵四边形ABCD为平行四边形,且A(﹣1,2),D(3,2),
    ∴点A是点D向左平移4个单位所得,
    ∵C(2,﹣1),
    ∴B(﹣2,﹣1).
    故答案为:(﹣2,﹣1).
    15.(2022•安徽)如图,▱OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=的图象经过点C,y=(k≠0)的图象经过点B.若OC=AC,则k= .
    【分析】设出C点的坐标,根据C点的坐标得出B点的坐标,然后计算出k值即可.
    【解答】解:由题知,反比例函数y=的图象经过点C,
    设C点坐标为(a,),
    作CH⊥OA于H,过A点作AG⊥BC于G,
    ∵四边形OABC是平行四边形,OC=AC,
    ∴OH=AH,CG=BG,四边形HAGC是矩形,
    ∴OH=CG=BG=a,
    即B(3a,),
    ∵y=(k≠0)的图象经过点B,
    ∴k=3a•=3,
    故答案为:3.
    16.(2022•日照)如图,在平面直角坐标系中,平行四边形OABC的顶点O在坐标原点,点E是对角线AC上一动点(不包含端点),过点E作EF∥BC,交AB于F,点P在线段EF上.若OA=4,OC=2,∠AOC=45°,EP=3PF,P点的横坐标为m,则m的取值范围是( )
    A.4<m<3+B.3﹣<m<4C.2﹣<m<3D.4<m<4+
    【分析】先求得点A,C,B三个点坐标,然后求得AB和AC的解析式,再表示出EF的长,进而表示出点P的横坐标,根据不等式的性质求得结果.
    【解答】解:可得C(,),A(4,0),B(4+,),
    ∴直线AB的解析式为:y=x﹣4,
    ∴x=y+4,
    直线AC的解析式为:y=﹣,
    ∴x=4+y﹣2y,
    ∴点F的横坐标为:y+4,点E的横坐标为:4+y﹣2y,
    ∴EF=(y+4)﹣(4+y﹣2y)=2,
    ∵EP=3PF,
    ∴PF=EF=y,
    ∴点P的横坐标为:y+4﹣y,
    ∵0<y<,
    ∴4<y+4﹣y<3+,
    故答案为:A.
    17.(2022•南通)如图,在▱ABCD中,对角线AC,BD相交于点O,AC⊥BC,BC=4,∠ABC=60°.若EF过点O且与边AB,CD分别相交于点E,F,设BE=x,OE2=y,则y关于x的函数图象大致为( )
    A.B.
    C.D.
    【分析】过O点作OM⊥AB于M,由含30°角的直角三角形的性质及勾股定理可求解AB,AC的长,结合平行四边形的性质可得AO的长,进而求得OM,AM的长,设BE=x,则EM=5﹣x,利用勾股定理可求得y与x的关系式,根据自变量的取值范围可求得函数值的取值,即可判断函数的图象求解.
    【解答】解:过O点作OM⊥AB于M,
    ∵AC⊥BC,∠ABC=60°,
    ∴∠BAC=30°,
    ∵BC=4,
    ∴AB=8,AC=,
    ∵四边形ABCD为平行四边形,
    ∴AO=AC=,
    ∴OM=AO=,
    ∴AM=,
    设BE=x,OE2=y,则EM=AB﹣AM﹣BE=8﹣3﹣x=5﹣x,
    ∵OE2=OM2+EM2,
    ∴y=(x﹣5)2+3,
    ∵0≤x≤8,当x=8时y=12,
    故符合解析式的图象为:
    故选:C.
    考点二:平行四边形的判定:
    知识回顾
    平行四边形的判定:
    ①一组对边平行且相等的四边形是平行四边形。
    ∵AB∥DC,AB=DC,∴四边行ABCD是平行四边形
    ②两组对边分别相等(两组对边分别平行)的四边形是平行四边形。
    符号语言:∵AB=DC,AD=BC(AB∥DC,AD∥BC),∴四边行ABCD是平行四边形.
    ③两组对角分别相等的四边形是平行四边形。
    ∵∠ABC=∠ADC,∠DAB=∠DCB,∴四边行ABCD是平行四边形
    ④对角线相互平行的四边形是平行四边形。
    ∵OA=OC,OB=OD,∴四边行ABCD是平行四边形
    微专题
    18.(2022•河北)依据所标数据,下列一定为平行四边形的是( )
    A.B.
    C.D.
    【分析】根据平行四边形的判定定理做出判断即可.
    【解答】解:A、80°+110°≠180°,故A选项不符合条件;
    B、只有一组对边平行不能确定是平行四边形,故B选项不符合题意;
    C、不能判断出任何一组对边是平行的,故C选项不符合题意;
    D、有一组对边平行且相等的四边形是平行四边形,故D选项符合题意;
    故选:D.
    19.(2022•达州)如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是( )
    A.∠B=∠FB.DE=EFC.AC=CFD.AD=CF
    【分析】利用三角形中位线定理得到DE∥AC,DE=AC,结合平行四边形的判定定理对各个选项进行判断即可.
    【解答】解:∵D,E分别是AB,BC的中点,
    ∴DE是△ABC的中位线,
    ∴DE∥AC,DE=AC,
    A、当∠B=∠F,不能判定AD∥CF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;
    B、∵DE=EF,
    ∴DE=DF,
    ∴AC=DF,
    ∵AC∥DF,
    ∴四边形ADFC为平行四边形,故本选项符合题意;
    C、根据AC=CF,不能判定AC=DF,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;
    D、∵AD=CF,AD=BD,
    ∴BD=CF,
    由BD=CF,∠BED=∠CEF,BE=CE,不能判定△BED≌△CEF,不能判定CF∥AB,即不能判定四边形ADFC为平行四边形,故本选项不符合题意;
    故选:B.
    20.(2022•临沂)如图,在正六边形ABCDEF中,M,N是对角线BE上的两点.添加下列条件中的一个:①BM=EN;②∠FAN=∠CDM;③AM=DN;④∠AMB=∠DNE.能使四边形AMDN是平行四边形的是 (填上所有符合要求的条件的序号).
    【分析】①连接AD,交BE于点O,证出OM=ON,由对角线互相平分的四边形是平行四边形可得出结论;②证明△AON≌△DOM(ASA),由全等三角形的性质得出AN=DM,根据一组对边平行且相等的四边形是平行四边形可得出结论;③不能证明△ABM与△DEN全等,则可得出结论;④证明△ABM≌△DEN(AAS),得出AM=DN,根据一组对边平行且相等的四边形是平行四边形可得出结论.
    【解答】解:①连接AD,交BE于点O,
    ∵正六边形ABCDEF中,∠BAO=∠ABO=∠OED=∠ODE=60°,
    ∴△AOB和△DOE是等边三角形,
    ∴OA=OD,OB=OE,
    又∵BM=EN,
    ∴OM=ON,
    ∴四边形AMDN是平行四边形,故①符合题意;
    ②∵∠FAN=∠CDM,∠CDA=∠DAF,
    ∴∠OAN=∠ODM,
    ∴AN∥DM,
    又∵∠AON=∠DOM,OA=OD,
    ∴△AON≌△DOM(ASA),
    ∴AN=DM,
    ∴四边形AMDN是平行四边形,故②符合题意;
    ③∵AM=DN,AB=DE,∠ABM=∠DEN,
    ∴△ABM与△DEN不一定全等,不能得出四边形AMDN是平行四边形,故③不符合题意;
    ④∵∠AMB=∠DNE,∠ABM=∠DEN,AB=DE,
    ∴△ABM≌△DEN(AAS),
    ∴AM=DN,
    ∵∠AMB+∠AMN=180°,∠DNM+∠DNE=180°,
    ∴∠AMN=∠DNM,
    ∴AM∥DN,
    ∴四边形AMDN是平行四边形,故④符合题意.
    故答案为:①②④.
    21.(2022•益阳)如图,在▱ABCD中,AB=8,点E是AB上一点,AE=3,连接DE,过点C作CF∥DE,交AB的延长线于点F,则BF的长为( )
    A.5B.4C.3D.2
    【分析】根据平行四边形的性质可知CD=AB=8,已知AE=3,则BE=5,再判定四边形DEFC是平行四边形,则DC=EF=8,BF=EF﹣BE,即可求出BF.
    【解答】解:在▱ABCD中,AB=8,
    ∴CD=AB=8,AB∥CD,
    ∵AE=3,
    ∴BE=AB﹣AE=5,
    ∵CF∥DE,
    ∴四边形DEFC是平行四边形,
    ∴DC=EF=8,
    ∴BF=EF﹣BE=8﹣5=3.
    故选:C.
    22.(2022•赤峰)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形ABCD,其中一张纸条在转动过程中,下列结论一定成立的是( )
    A.四边形ABCD周长不变B.AD=CD
    C.四边形ABCD面积不变D.AD=BC
    【分析】由条件可知AB∥CD,AD∥BC,可证明四边形ABCD为平行四边形,可得到AD=BC.
    【解答】解:由题意可知:AB∥CD,AD∥BC,
    ∴四边形ABCD为平行四边形,
    ∴AD=BC,
    故选:D.
    23.(2022•嘉兴)如图,在△ABC中,AB=AC=8,点E,F,G分别在边AB,BC,AC上,EF∥AC,GF∥AB,则四边形AEFG的周长是( )
    A.8B.16C.24D.32
    【分析】由EF∥AC,GF∥AB,得四边形AEFG是平行四边形,∠B=∠GFC,∠C=∠EFB,再由AB=AC=8和等量代换,即可求得四边形AEFG的周长.
    【解答】解:∵EF∥AC,GF∥AB,
    ∴四边形AEFG是平行四边形,∠B=∠GFC,∠C=∠EFB,
    ∵AB=AC,
    ∴∠B=∠C,
    ∴∠B=∠EFB,∠GFC=∠C,
    ∴EB=EF,FG=GC,
    ∵四边形AEFG的周长=AE+EF+FG+AG,
    ∴四边形AEFG的周长=AE+EB+GC+AG=AB+AC,
    ∵AB=AC=8,
    ∴四边形AEFG的周长=AB+AC=8+8=16,
    故选:B.
    相关试卷

    2024年中考数学必考考点专题32 统计篇(解析版): 这是一份2024年中考数学必考考点专题32 统计篇(解析版),共22页。

    2024年中考数学必考考点专题30 圆篇(解析版): 这是一份2024年中考数学必考考点专题30 圆篇(解析版),共35页。

    2024年中考数学必考考点专题26 矩形篇(解析版): 这是一份2024年中考数学必考考点专题26 矩形篇(解析版),共14页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年中考数学必考考点专题24 平行四边形篇(解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map