题型八 函数的实际应用 类型二 阶梯费用及行程类问题23题(专题训练)-中考数学二轮复习满分冲刺题型突破(全国通用)
展开
这是一份题型八 函数的实际应用 类型二 阶梯费用及行程类问题23题(专题训练)-中考数学二轮复习满分冲刺题型突破(全国通用),文件包含题型八函数的实际应用类型二阶梯费用及行程类问题23题专题训练原卷版docx、题型八函数的实际应用类型二阶梯费用及行程类问题23题专题训练解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
(1)当时,求乙距山脚的垂直高度y与x之间的函数关系式;
(2)求乙乘坐缆车上升过程中,和甲处于同一高度时距山脚的垂直高度.
2.(2023·黑龙江齐齐哈尔·统考中考真题)一辆巡逻车从A地出发沿一条笔直的公路匀速驶向B地,小时后,一辆货车从A地出发,沿同一路线每小时行驶80千米匀速驶向B地,货车到达B地填装货物耗时15分钟,然后立即按原路匀速返回A地.巡逻车、货车离A地的距离y(千米)与货车出发时间x(小时)之间的函数关系如图所示,请结合图象解答下列问题:
(1)A,B两地之间的距离是______千米,______;
(2)求线段所在直线的函数解析式;
(3)货车出发多少小时两车相距15千米?(直接写出答案即可)
3.(2023·全国·统考中考真题)甲、乙两个工程组同时挖掘沈白高铁某段隧道,两组每天挖掘长度均保持不变,合作一段时间后,乙组因维修设备而停工,甲组单独完成了剩下的任务,甲、乙两组挖掘的长度之和与甲组挖掘时间x(天)之间的关系如图所示.
(1)甲组比乙组多挖掘了__________天.
(2)求乙组停工后y关于x的函数解析式,并写出自变量x的取值范围.
(3)当甲组挖掘的总长度与乙组挖掘的总长度相等时,直接写出乙组己停工的天数.
4.某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系,(其中,且x为整数)
(1)直接写出y与x的函数关系式;
(2)当售价为多少时,商家所获利润最大,最大利润是多少?
5.(2023·浙江金华·统考中考真题)兄妹俩放学后沿图1中的马路从学校出发,到书吧看书后回家,哥哥步行先出发,途中速度保持不变;妺妺骑车,到书吧前的速度为200米/分.图2中的图象分别表示两人离学校的路程(米)与哥哥离开学校的时间(分)的函数关系.
(1)求哥哥步行的速度.
(2)已知妺妺比哥哥迟2分钟到书吧.
①求图中的值;
②妺妺在书吧待了10分钟后回家,速度是哥哥的倍,能否在哥哥到家前追上哥哥?若能,求追上时兄妺俩离家还有多远;若不能,说明理由.
6.为了切实保护汉江生态环境,襄阳市政府对汉江襄阳段实施全面禁渔.禁渔后,某水库自然生态养殖的鱼在市场上热销,经销商老李每天从该水库购进草鱼和鲢鱼进行销售,两种鱼的进价和售价如下表所示:
已知老李购进10斤鲢鱼和20斤草鱼需要155元,购进20斤鲢鱼和10斤草鱼需要130元.
(1)求,的值;
(2)老李每天购进两种鱼共300斤,并在当天都销售完,其中销售鲢鱼不少于80斤且不超过120斤,设每天销售鲢鱼斤(销售过程中损耗不计).
①分别求出每天销售鲢鱼获利(元),销售草鱼获利(元)与的函数关系式,并写出的取值范围;
②端午节这天,老李让利销售,将鲢鱼售价每斤降低元,草鱼售价全部定为7元斤,为了保证当天销售这两种鱼总获利(元)的最小值不少于320元,求的最大值.
7.(2023·浙江宁波·统考中考真题)某校与部队联合开展红色之旅研学活动,上午7:00,部队官兵乘坐军车从营地出发,同时学校师生乘坐大巴从学校出发,沿公路(如图1)到爱国主义教育基地进行研学,上午8:00,军车在离营地的地方追上大巴并继续前行,到达仓库后,部队官兵下车领取研学物资,然后乘坐军车按原速前行,最后和师生同时到达基地,军车和大巴离营地的路程s(km)与所用时间t(h)的函数关系如图2所示.
(1)求大巴离营地的路程s与所用时间t的函数表达式及a的值,
(2)求部队官兵在仓库领取物资所用的时间.
8.某校组织学生从学校出发,乘坐大巴前往基地进行研学活动.大巴出发1小时后,学校因事派人乘坐轿车沿相同路线追赶.已知大巴行驶的速度是40千米/小时,轿车行驶的速度是60千米/小时.
(1)求轿车出发后多少小时追上大巴?此时,两车与学校相距多少千米?
(2)如图,图中OB,AB分别表示大巴、轿车离开学校的路程s(千米)与大巴行驶的时间t(小时)的函数关系的图象.试求点B的坐标和AB所在直线的解析式;
(3)假设大巴出发a小时后轿车出发追赶,轿车行驶了1.5小时追上大巴,求a的值.
9.(2023·浙江绍兴·统考中考真题)一条笔直的路上依次有三地,其中两地相距1000米.甲、乙两机器人分别从两地同时出发,去目的地,匀速而行.图中分别表示甲、乙机器人离地的距离(米)与行走时间(分钟)的函数关系图象.
(1)求所在直线的表达式.
(2)出发后甲机器人行走多少时间,与乙机器人相遇?
(3)甲机器人到地后,再经过1分钟乙机器人也到地,求两地间的距离.
10.A,B两地相距,甲、乙两人分别开车从A地出发前往B地,其中甲先出发,如图是甲,乙行驶路程随行驶时间变化的图象,请结合图象信息.解答下列问题:
(1)填空:甲的速度为___________;(2)分别求出与x之间的函数解析式;
(3)求出点C的坐标,并写点C的实际意义.
11.(2023·天津·统考中考真题)已知学生宿舍、文具店、体育场依次在同一条直线上,文具店离宿舍,体育场离宿舍,张强从宿舍出发,先用了匀速跑步去体育场,在体育场锻炼了,之后匀速步行了到文具店买笔,在文具店停留后,用了匀速散步返回宿舍.下面图中x表示时间,y表示离宿舍的距离.图象反映了这个过程中张强离宿舍的距离与时间之间的对应关系.
请根据相关信息,回答下列问题:
(1)①填表:
②填空:张强从体育场到文具店的速度为________;
③当时,请直接写出张强离宿舍的距离y关于时间x的函数解析式;
(2)当张强离开体育场时,同宿舍的李明也从体育场出发匀速步行直接回宿舍,如果李明的速度为,那么他在回宿舍的途中遇到张强时离宿舍的距离是多少?(直接写出结果即可)
12.因疫情防控需婴,一辆货车先从甲地出发运送防疫物资到乙地,稍后一辆轿车从甲地急送防疫专家到乙地.已知甲、乙两地的路程是,货车行驶时的速度是.两车离甲地的路程与时间的函数图象如图.(1)求出a的值;(2)求轿车离甲地的路程与时间的函数表达式;(3)问轿车比货车早多少时间到达乙地?
13.(2023·辽宁大连·统考中考真题)为了增强学生身体素质,学校要求男女同学练习跑步.开始时男生跑了,女生跑了,然后男生女生都开始匀速跑步.已知男生的跑步速度为,当到达终点时男、女均停止跑步,男生从开始匀速跑步到停止跑步共用时.已知轴表示从开始匀速跑步到停止跑步的时间,轴代表跑过的路程,则:
(1)男女跑步的总路程为_______________.
(2)当男、女相遇时,求此时男、女同学距离终点的距离.
14.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.
已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓,超市离学生公寓,小琪从学生公寓出发,匀速步行了到阅览室;在阅览室停留后,匀速步行了到超市;在超市停留后,匀速骑行了返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离与离开学生公寓的时间之间的对应关系.
请根据相关信息,解答下列问题:
(1)填表:
(2)填空:①阅览室到超市的距离为___________;
②小琪从超市返回学生公寓的速度为___________;
③当小琪离学生公寓的距离为时,他离开学生公寓的时间为___________.
(3)当时,请直接写出y关于x的函数解析式.
15.(2023·黑龙江·统考中考真题)已知甲,乙两地相距,一辆出租车从甲地出发往返于甲乙两地,一辆货车沿同一条公路从乙地前往甲地,两车同时出发,货车途经服务区时,停下来装完货物后,发现此时与出租车相距,货车继续出发后与出租车相遇.出租车到达乙地后立即按原路返回,结果比货车早15分钟到达甲地.如图是两车距各自出发地的距离与货车行驶时间之间的函数图象,结合图象回答下列问题:
(1)图中的值是__________;
(2)求货车装完货物后驶往甲地的过程中,距其出发地的距离与行驶时间之间的函数关系式;
(3)直接写出在出租车返回的行驶过程中,货车出发多长时间与出租车相距.
16.如图1,小刚家,学校、图书馆在同一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中(上、下车时间忽略不计).小刚离家的距离与他所用的时间的函数关系如图2所示.
(1)小刚家与学校的距离为___________,小刚骑自行车的速度为________;
(2)求小刚从图书馆返回家的过程中,与的函数表达式;
(3)小刚出发35分钟时,他离家有多远?
17.在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回“鼠”、“猫”距起点的距离与时间之间的关系如图所示.
(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是______;
(2)求的函数表达式;
(3)求“猫”从起点出发到返回至起点所用的时间.
18.在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.
已知学校、书店、陈列馆依次在同一条直线上,书店离学校,陈列馆离学校.李华从学校出发,匀速骑行到达书店;在书店停留后,匀速骑行到达陈列馆;在陈列馆参观学习一段时间,然后回学校;回学校途中,匀速骑行后减速,继续匀速骑行回到学校.给出的图象反映了这个过程中李华离学校的距离与离开学校的时间之间的对应关系.
请根据相关信息,解答下列问题:
(Ⅰ)填表
(Ⅱ)填空:
①书店到陈列馆的距离为________;
②李华在陈列馆参观学的时间为_______h;
③李华从陈列馆回学校途中,减速前的骑行速度为______;
④当李华离学校的距离为时,他离开学校的时间为_______h.
(Ⅲ)当时,请直接写出y关于x的函数解析式.
19.公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s) 的关系分别可以用二次函数和一次函数表示,其图象如图所示.
(1)当甲车减速至9m/s时,它行驶的路程是多少?
(2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?
20.某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量(件)与销售时间(天)之间的关系式是 ,销售单价(元/件)与销售时间(天)之间的函数关系如图所示.
(1)第15天的日销售量为_________件;
(2)当时,求日销售额的最大值;
(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?
21.为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.
(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;
(2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.
①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?
②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x的取值范围.
22.小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟.在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段表示小华和商店的距离(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:
(1)填空:妈妈骑车的速度是___________米/分钟,妈妈在家装载货物所用时间是__________分钟,点M的坐标是___________;
(2)直接写出妈妈和商店的距离(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;
(3)求t为何值时,两人相距360米.
23.(2023·江苏连云港·统考中考真题)目前,我市对市区居民用气户的燃气收费,以户为基础、年为计算周期设定了如下表的三个气量阶梯:
(1)一户家庭人口为3人,年用气量为,则该年此户需缴纳燃气费用为__________元;
(2)一户家庭人口不超过4人,年用气量为,该年此户需缴纳燃气费用为元,求与的函数表达式;
(3)甲户家庭人口为3人,乙户家庭人口为5人,某年甲户、乙户缴纳的燃气费用均为3855元,求该年乙户比甲户多用多少立方米的燃气?(结果精确到)
进价(元/斤)
售价(元/斤)
鲢鱼
5
草鱼
销量不超过200斤的部分
销量超过200斤的部分
8
7
张强离开宿舍的时间/
1
10
20
60
张强离宿舍的距离/
1.2
离开学生公寓的时间/
5
8
50
87
112
离学生公寓的距离/
0.5
1.6
离开学校的时间/
离学校的距离/
阶梯
年用气量
销售价格
备注
第一阶梯
(含400)的部分
2.67元
若家庭人口超过4人的,每增加1人,第一、二阶梯年用气量的上限分别增加.
第二阶梯
(含1200)的部分
3.15元
第三阶梯
以上的部分
3.63元
相关试卷
这是一份题型八 函数的实际应用 类型四 抛物线型问题16题(专题训练)-中考数学二轮复习满分冲刺题型突破(全国通用),文件包含题型八函数的实际应用类型四抛物线型问题16题专题训练原卷版docx、题型八函数的实际应用类型四抛物线型问题16题专题训练解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
这是一份题型七 函数的基本性质 类型三二次函数45题(专题训练)-中考数学二轮复习满分冲刺题型突破(全国通用),文件包含题型七函数的基本性质类型三二次函数45题专题训练原卷版docx、题型七函数的基本性质类型三二次函数45题专题训练解析版docx等2份试卷配套教学资源,其中试卷共64页, 欢迎下载使用。
这是一份专题09 函数的实际应用(行程问题、最优方案、阶梯费用)-备战2024年中考数学一轮复习重难题型(全国通用),文件包含专题09函数的实际应用行程问题最优方案阶梯费用原卷版docx、专题09函数的实际应用行程问题最优方案阶梯费用解析版docx等2份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。