所属成套资源:新高考版2023年高考数学必刷压轴题专题(附解析)
新高考版2023年高考数学必刷压轴题专题18立体几何与空间向量选填压轴题(学生版)
展开这是一份新高考版2023年高考数学必刷压轴题专题18立体几何与空间向量选填压轴题(学生版),共9页。
1.(2022·湖南岳阳·高三阶段练习)已知直三棱柱中,,当该三棱柱体积最大时,其外接球的体积为( )
A.B.C.D.
2.(2022·浙江省苍南中学高三阶段练习)我国古代数学名著《九章算术》中记载的“刍䠢”指底面为矩形.顶部只有一条棱的五面体.如图,五面体是一个“刍䠢”,其中是正三角形, , ,则该五面体的体积为( )
A.B.C.D.
3.(2022·全国·模拟预测)在棱长为3的正方体中,点为侧面内一动点,且满足平面,若,三棱锥的所有顶点均在球的球面上,则球的表面积为( )
A.B.C.D.
4.(2022·浙江嘉兴·高三阶段练习)为庆祝国庆,立德中学将举行全校师生游园活动,其中有一游戏项目是夹弹珠.如图,四个半径都是1cm的玻璃弹珠放在一个半球面形状的容器中,每颗弹珠的顶端恰好与容器的上沿处于同一水平面,则这个容器的容积是( )
A.B.
C.D.
5.(2022·全国·高三专题练习)公元年,唐代李淳风注《九章》时提到祖暅的开立圆术.祖暅在求球体积时,使用一个原理:“幂势既同,则积不容异”,意思是两个同高的立体,如在等高处的截面积恒相等,则体积相等.上述原理在中国被称为祖暅原理,我们可以应用此原理将一些复杂几何体转化为常见几何体的组合体来计算体积.如图,将双曲线与直线所围成的平面图形绕双曲线的实轴所在直线旋转一周得到几何体,下列平面图形绕其对称轴(虚线所示)旋转一周所得几何体与的体积相同的是( )
A.图①,长为、宽为的矩形的两端去掉两个弦长为、半径为的弓形
B.图②,长为、宽为的矩形的两端补上两个弦长为、半径为的弓形
C.图③,长为、宽为的矩形的两端去掉两个底边长为、腰长为的等腰三角形
D.图④,长为、宽为的矩形的两端补上两个底边长为、腰长为的等腰三角形
6.(2022·全国·高三专题练习)半径为的球的直径垂直于平面,垂足为,是平面内边长为的正三角形,线段分別与球面交于点,那么三棱锥的体积是( )
A.B.C.D.
7.(2022·全国·高三专题练习)在中,,点分别在边上移动,且,沿将折起来得到棱锥,则该棱锥的体积的最大值是( )
A.B.C.D.
8.(2022·浙江·高三开学考试)已知半径为1的球面上有四个点,,且,则四面体的体积最大值为( )
A.B.C.D.
9.(2022·全国·高一课时练习)如图所示,正方形的边长为2,切去阴影部分后,剩下的部分围成一个正四棱锥,则正四棱锥的侧面积的取值范围为( )
A.B.C.D.
10.(2022·湖北·高三开学考试)在三棱锥中,,,,,则三棱锥外接球的表面积为( )
A.B.C.D.
11.(2022·江西·高三阶段练习(理))在正三棱锥中,,分别是,的中点,且,,则正三棱锥的内切球的表面积为( )
A.B.
C.D.
12.(2022·河南·高三阶段练习(理))三棱锥的三视图如图所示,且其外接球的半径为4,则三棱锥的体积的最大值为___________.
13.(2022·河南·宜阳县第一高级中学高二阶段练习)正方体棱长为2,E是棱的中点,F是四边形内一点(包含边界),且,当直线与平面所成的角最大时,三棱锥的体积为__________.
14.(2022·广东汕头·高三阶段练习)在边长为2的菱形中,,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的外接球的表面积为___________.
15.(2022·全国·高三专题练习)祖暅原理:“幂势既同,则积不容异”.即:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.有一个球形瓷碗,它可以看成半球的一部分,若瓷碗的直径为8,高为2,利用祖暅原理可求得该球形瓷碗的体积为______.
16.(2022·福建省漳州第一中学模拟预测)已知正四棱锥的各顶点都在同一个球面上.若该正四棱锥的体积为,则该球的表面积的最小值为___________.
②动点问题
1.(2022·黑龙江·哈师大附中高二开学考试)已知正方体的棱长为分别是棱的中点,动点在正方形(包括边界)内运动,若面,则线段的长度范围是( )
A.B.C.D.
2.(2022·河南·信阳高中高一期末)我们把底面是正三角形,顶点在底面的射影是正三角形中心的三棱锥称为正三棱锥.现有一正三棱锥放置在平而上,已知它的底面边长为2,高,该正三棱锥绕边在平面上转动(翻转),某个时刻它在平面上的射影是等腰直角三角形,则的取值范围是( )
B.C.D.
3.(2022·重庆·西南大学附中高一期末)已知正方体的棱长为1,E为中点,F为棱CD上异于端点的动点,若平面BEF截该正方体所得的截面为四边形,则线段CF的取值范围是( )
A.B.C.D.
4.(2022·全国·高三专题练习)如图,正方体的棱长为,点为棱上一点,点在底面上,且,点为线段的中点,则线段长度的最小值是( )
A.B.C.2D.6
5.(2022·天津市西青区杨柳青第一中学高一期末)如图,矩形中,,为边的中点.将沿直线翻折成(平面).若在线段上(点与,不重合),则在翻折过程中,给出下列判断:
①当为线段中点时,为定值;
②存在某个位置,使;
③当四棱锥体积最大时,点到平面的距离为;
④当二面角的大小为时,异面直线与所成角的余弦值为.
其中判断正确的个数为( )
A.1B.2C.3D.4
6.(2022·北京市第十二中学高一期末)如图,正方体的棱长为1,为对角线上的一点(不与点、重合),过点作平面与正方体表面相交形成的多边形记为.
①若是三角形,则必定是锐角三角形
②若,则只可能为三角形或六边形
③若且点为对角线的三等分点,则的周长为
④若点为对角线的三等分点,则点到各顶点的距离的不同取值有4个
以上所有正确结论的个数为( )
A.4B.3C.2D.1
7.(2022·湖北武汉·高一期末)已知正方体,的棱长为2,点为线段(含端点)上的动点,平面,下列说法正确的是( )
A.若点为中点,当最小时,
B.当点与重合时,若平面截正方体所得截面图形的面积越大,则其截面周长就越大
C.直线与平面所成角的余弦值的取值范围为
D.若点为的中点,平面过点,则平面截正方体所得截面图形的面积为
8.(2022·四川·成都七中高二阶段练习(理))如图,在棱长为的正方体中,点在线段(不包含端点)上,则下列结论正确的有( )个
①点在平面的射影为的中心;
②直线平面;
③异面直线与所成角不可能为;
④三棱锥的外接球表面积的取值范围为.
A.B.C.D.
9.(2022·四川达州·高二期末(文))正方体的棱长为1,点在正方体内部及表面上运动,下列结论错误的是( )
A.若点在线段上运动,则
B.若点在线段上运动,则平面
C.若点在内部及边界上运动,则的最大值为3
D.若点满足,则点轨迹的面积为
10.(2022·上海·高二单元测试)在棱长为1的正方体中,P为底面ABCD内(含边界)一点,以下选项错误的是( ).
A.若,则满足条件的P点有且只有一个
B.若,则点P的轨迹是一段圆弧
C.若平面,则长的最小值为
D.若且平面,则平面截正方体外接球所得截面的面积为
11.(2022·四川省内江市第六中学模拟预测(理))如图,正方形的边长为为的中点,将沿向上翻折到,连接,在翻折过程中,下列说法中正确的是( )
①四棱锥的体积最大值为②.中点的轨迹长度为
③与平面所成角的正弦值之比为
④三棱锥的外接球半径有最小值,没有最大值
A.①③B.②③C.①③④D.①②③
12.(2022·全国·高三专题练习)如图所示,在直三棱柱中,棱柱的侧面均为矩形,,,,P是上的一动点,则的最小值为_____.
13.(2022·安徽·高三开学考试)在侧棱长为,底面边长为2的正三棱锥P-ABC中,E,F分别为AB,BC的中点,M,N分别为PE和平面PAF上的动点,则的最小值为__________.
14.(2022·全国·高三专题练习)如图,在正方形中,点是边的中点,将沿翻折到,连接,在翻折到的过程中,下列说法正确的是_________.(将正确说法的序号都写上)
①点的轨迹为圆弧;
②存在某一翻折位置,使得;
③棱的中点为,则的长为定值;
相关试卷
这是一份新高考版2023年高考数学必刷压轴题专题16数列选填压轴题(学生版),共7页。
这是一份专题19 立体几何与空间向量(选填压轴题) 高考数学压轴题(新高考版),文件包含专题19立体几何与空间向量选填压轴题教师版docx、专题19立体几何与空间向量选填压轴题学生版docx等2份试卷配套教学资源,其中试卷共45页, 欢迎下载使用。
这是一份专题19 立体几何与空间向量(选填压轴题)(学生+教师版)--310高考数学压轴题(新高考版),文件包含专题19立体几何与空间向量选填压轴题教师版docx、专题19立体几何与空间向量选填压轴题学生版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。