2023-2024学年小升初分班考数学押题卷02【吉林省专用】(北师大版)
展开第二,分班考试能为以后的推优争取机会。
第三,分班考试有利于学校、老师了解学生情况。
第,有的私立学校会把入学考试成绩作为奖学金依据,学生要想拿到奖学金就必须做好充分的准备,力争考出最高水平。
大多数学校还是以语数英为主,综合考察,但有一些学 校看中数学、英语等单科成绩。
1、提前预习初一知识点 2、做之前各学校分班试卷(查漏补缺)
3、附近的小初衔接班,找好老师 4、知识归纳和总结,学会复习
吉林省长春市重点中学2023-2024学年小升初数学分班考培优卷(北师大版)
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息。
2.请将答案正确填写在答题卡上。
3.答完试卷后。务必再次检查哦!
一、选择题
1.若a、b、c是不同的非零自然数,而且×a<a正确的结论是( )
A.a<bB.b<cC.a<cD.c<b
2.如图,下面说法正确的是( )
A.小红家在广场东偏北60°300米处
B.广场在学校南偏东35°200米处
C.广场在小红家东偏北30°300米处
3.王大爷家院子里,原有一个用栅栏围成的长5米,宽3米的长方形羊圈,因发展需要,现在要改围成一面靠墙且占地至少达到35平方米的羊圈,你以为下面第( )个方案比较合理.
A.B.C.
4.已知圆的周长是18.84厘米,它的直径是( )。
A.6厘米B.12.56厘米C.12厘米
5.下面图形中,对称轴条数最少的是( )。
A.B.C.D.
6.一根绳子,剪去,恰好是米,这根绳子长多少米?正确的列式是( )。
A.÷5B.+5C.5÷D.×5
二、填空题
7.两根铁丝的长都是2m,第一根用去,第二根用去,剩下的铁丝相比,( )根长。
8.花18元买了2千克水果,总价与数量的比是 .
9.一棵树的树干近似于圆柱形,底面半径是10厘米,园林工人要在这棵树的树干上刷1.2米高的石灰水,以防治病虫害,刷石灰水部分的面积约是( )平方厘米。
10.四成半是 %,七折就是原价的 %.
11.如□→□□→□□□所示,用同样的小棒摆正方形,像这样摆7个同样的正方形要( )根小棒,摆n个同样的正方形要( )根小棒。
12.一件衣服原价200元,商店打八折优惠,即现价是原价的 %,现价是 元。
13.( )m比200m少20%,200m比( )m少20%。
14.学校举行科学知识竞赛,抢答题的评分规则是答对一题得20分,记作﹢20分;答错一题扣10分,应记作( )分。
15.一个圆锥底面直径8厘米,高10厘米,它的体积是 立方厘米.
16.已知=,那么a∶b=( )∶( );a和b成( )比例。
三、判断题
17.把一个周长25.12cm的圆纸片剪成两个半圆,每个半圆的周长是12.56cm。( )
18.一种商品打“八五折”出售,也就是把这种商品优惠了85%。( )
19.如果y>0,那么y÷的结果比y大。( )
20.男生人数的等于女生人数。是把男生人数看作单位“1”。( )
21.把一个长5cm,宽3cm的长方形按2∶1放大后,得到的图形的面积是30cm2。( )
22.甲乙两地相距120千米,画在地图上是6厘米,这幅图的比例尺是. .
23.一台冰箱按原价的85%出售,这台冰箱是打八五折出售的。( )
24.一个假分数的倒数一定比这个假分数大. ( )
25.第一车间昨天出勤50人,缺勤2人,缺勤率是4%。( )
四、计算题
26.直接写出结果。
27.怎样简便怎样算。
(1)×[÷(-)] (2)8-÷- (3)33×
28.求未知数x。
(1)7∶x=∶ (2)1.5×0.4-20%x= (3)=∶
五、图形计算
29.看图列式计算.
30.根据下图圆柱的有关数据算一算。
底面的周长。 (2)底面的面积。
(3)侧面的面积。 (4)圆柱的体积。
31.大圆半径R1=3厘米,小圆半径R2=2厘米,求两圆空白部分的面积之差.
六、解答题
32.六一中队参加春季植树活动,共植树50棵,结果成活46棵。这批树的成活率和死亡率各是多少?
33.一个大长方形被两条平行于它的两条边的线分成a、b、c、d四个小长方形。已知a的面积是10平方厘米,b的面积是14平方厘米。c的面积是35平方厘米,求d的面积。
某饭店习惯给客人使用一次性筷子,每周购买一次性筷子要用掉36元钱,每双筷子元,这个饭店每周要用掉多少双一次性筷子?
35.下面是雷达站和几个小岛的位置分布图,以雷达站为观测点。
(1)A岛的位置在( )偏( )( )方向上,距离雷达站( )km;
(2)B岛的位置在( )偏( )( )方向上,距离雷达站( )km;
(3)C岛的位置在南偏西35°方向上,距离雷达站60km处。请在图中画出C岛的准确位置。
36.甲、乙两人骑自行车从A、B两地同时相向而行,甲行完AB全程要6小时,甲、乙相遇时所行的路程比是3∶2,相遇时甲比乙多行18千米,求乙每小时行多少千米?
先画一个半径1厘米的圆,再在圆中画一个圆心角是的扇形。并求出这个扇形的面积。取
38.甲、乙两人同时从A地去B地(行走的速度保持不变),当甲行走了全程的时,乙行走了20千米,当甲到达B地时,乙还有全程的没有行走,A.B两地相距多少千米?
参考答案:
1.D
【详解】试题分析:a、b、c都≥1,而×a<a,说明<1;即是真分数,c<b.
解:×a<a,那么
<1;
所以c<b;
点评:通过平常的计算我们可以总结规律:两个数的积与其中一个因数比较,(两个因数都不为0),要看另一个因数;如果另一个因数大于1,则积大于这个因数;如果另一个因数小于1,则积小于这个因数;如果另一个因数等于1,则积等于这个因数;由此规律解决问题.
2.C
【分析】图上距离1厘米表示实际距离100米,于是可以求出小红家与广场,广场与学校的实际距离,再依据地图上的方向辨别方法,即“上北下南,左西右东”,以及图上标注的其他信息,即可描述出小红家与广场的位置关系。
【详解】因为图上距离1厘米表示实际距离100米,则小红家与广场的实际距离为100×3=300(米),广场与学校的实际距离为100×2=200(米)
再据它们的方向关系可知:
A.小红家在广场南偏西60°300米处;
B.广场在学校西偏北55°200米处;
C.广场在小红家东偏北30°300米处;
故答案为:C
3.C
【详解】试题分析:由题目条件可知:栅栏的长度为(5+3)×2,且这个长度是一定的,再利用长方形、正方形和圆的面积公式分别求出它们的面积,与35比较大小即可得出结论.
解:原有栅栏长度:(3+5)×2=16(米),
(1)正方形的边长是16÷3=(米),
正方形的面积:==28(平方米);
(2)假设长方形的长是10米,宽是3厘米,
长方形的面积:10×3=30(平方米);
(3)因为半圆弧长16,则半径=(米),
半圆的面积:π×()2=(平方米);
所以只有半圆形能够保证面积大于35平方米.
故选C.
点评:解答此题的关键是:先求出原有栅栏长度,分别计算出各个面积,再比较大小即可.
4.A
【解析】根据圆的周长=πd(d是直径),可知d=周长÷π,代入数据计算即可得到圆的直径。
【详解】18.84÷3.14=6(厘米)
故答案为:A。
【点睛】本题考查圆的周长,明确圆的周长=πd(d是直径)是解答本题的关键。
5.D
【分析】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,据此数出它们的对称轴,即可选择。
【详解】A.有3条对称轴;
B.有4条对称轴;
C.有无数条对称轴;
D.有1条对称轴。
故答案为:D
【点睛】此题考查了利用轴对称图形的定义确定轴对称图形的对称轴的条数的灵活运用。
6.C
【分析】将绳子长度看作单位“1”,用剪去的长度÷对应分率=绳子长度。
【详解】根据分析,列式为:5÷
故答案为:C
【点睛】关键是确定单位“1”,部分数量÷对应分率=整体数量。
7.第二
【分析】分别求出两根铁丝剩下的长度,比较即可。分别将铁丝长度看作单位“1”,第一根,铁丝长度×剩下长度对应分率=剩下长度;第二跟,铁丝长度-用去长度=剩下长度。
【详解】2×(1-)
=2×
=(m)
2-=(m)
>,剩下的铁丝相比,第二根长。
【点睛】关键是理解分数的意义,分数既可以表示具体数量,也可以表示数量关系。
8.9:1.
【详解】试题分析:根据题意,可知水果总价是18元,数量是2千克,进而写出它们的对应比,再化简成最简比.
解:18:2=9:1.
点评:此题考查比的意义和化简比的方法,
9.7536
【分析】由题意可知,刷石灰水部分的面积是高为1.2米的侧面积,根据圆柱的侧面积公式:S=2πrh,据此进行计算即可。
【详解】1.2米厘米
=62.8×120
(平方厘米)
则刷石灰水部分的面积约是7536平方厘米。
【点睛】本题考查圆柱的侧面积,熟记公式是解题的关键。
10.45,70
【详解】试题分析:几成就是十分之几,即百分之几十,所以四成半化成小数就是0.45,化成百分数就是45%;
几折就表示现价是原价的百分之几十,七折就是原价的70%.
解:四成半化成小数就是0.45,化成百分数就是45%,
七折,即是 原价的70%,
故答案为45,70.
点评:本题重点要理解成数和“折”的意义.
11. 28 4n
【分析】观察图形可知:1个小正方形需要4根小棒,2个小正方形需要2×4根小棒,3个小正方形需要3×4根小棒…,由此找出规律解答即可。
【详解】通过上述分析可知:n个小正方形需要n×4=4n根小棒。
当n=7时,需要小棒:
4×7=28(根)
这样摆7个正方形,需要28根小棒,摆n个同样的正方形要4n根小棒。
【点睛】根据题干中特殊的例子,推理得出这组图形的一般规律,是解决此类问题的关键。
12. 80 160
【分析】八折是指现价是原价的80%,把原价看成单位“1”,用原价乘上80%就是现价。
【详解】打八折优惠,即现价是原价的80%,
200×80%=160(元)
商店打八折优惠,即现价是原价的80%,现价是160元。
【点睛】本题考查了百分数的实际应用,已知一个数求它的百分之几是多少,用乘法计算。
13. 160 250
【分析】先求出比一个数少百分之几的具体数量,再用减法计算;
根据分数的意义,因为单位“1”是未知的,所以用除法来计算,用到“对应量÷对应分率”。
【详解】200-200×20%
=200-40
=160m
200÷(1-20%)
=200÷80%
=250m
【点睛】本题主要考查百分数的应用,找准单位“1”是解题的关键。
14.﹣10
【分析】正负数主要用来表示具有相反意义的两种量,如果规定其中一个为正,那么相反的量就用负来表示,答对为“﹢”,那么答错为“﹣”,数字前面加上负号,据此解答。
【详解】分析可知,学校举行科学知识竞赛,抢答题的评分规则是答对一题得20分,记作﹢20分;答错一题扣10分,应记作﹣10分。
【点睛】本题主要考查正负数的意义及应用,正数与负数表示意义相反的两种量,分清哪一个为正,则意义相反的量就为负。
15.167.5
【详解】试题分析:圆锥的体积=πr2h,由此先求出这个圆锥的底面半径,再代入数据即可求出圆锥的体积.
解:×3.14×(8÷2)2×10,
=×3.14×16×10,
≈167.5(立方厘米),
答:它的体积是167.5立方厘米.
故答案为167.5.
点评:此题考查了圆锥体积的计算应用.
16. 13 9 正
【详解】略
【分析】根据比例的基本性质得到13∶9,再根据正比例的定义明确a,b两个数成正比例。
17.×
【分析】根据半圆的周长计算方法,可知半圆的周长=周长的一半+一条直径的长度,据此分析即可判断。
【详解】半圆的周长=周长的一半+一条直径的长度=2πr÷2+2r=πr+2r,
本题计算时,把半圆的周长计算成πr,没有加上一条直径,所以计算错误,
原因是混淆了“圆的周长的一半”和“半圆的周长”两个概念。“圆的周长的一半”是“πr”,而“半圆的周长”是“πr+2r”。
故答案为:×
【点睛】此题主要考查半圆的周长公式的推导,不要忘记加直径。
18.×
【详解】折扣问题
1-85%=15%
故答案为:×
打“八五折”出售,也就是按原价的85%出售,把原价看作“1”,即优惠了(1-85%),由此进行判断。
19.√
【分析】被除数大于0时,被除数除以大于1的数,所得结果一定小于原来这个数;被除数大于0时,被除数除以小于1的数,所得结果一定大于原来这个数,举例说明即可。
【详解】因为<1,所以y÷>y,假设y=,y÷=÷=,>。
故答案为:√
【点睛】掌握商和被除数的关系是解答题目的关键。
20.√
【分析】由题意可知,女生人数=男生人数×,此时把男生人数看作单位“1”。
【详解】
由上可知,把男生人数看作单位“1”。
故答案为:√
【点睛】求一个数的几分之几是多少用分数乘法计算。
21.×
【分析】把图形按照n:1放大,就是将图形的每一条边放大到原来的n倍,分别求出放大后的长和宽的长度,求出面积进行比较即可,长方形的面积=长×宽。
【详解】放大后长=5×2=10cm;宽=3×2=6cm;则面积=10×6=60cm2
故答案为:×
【点睛】理解图形放大与缩小的含义是解题的关键。
22.错误
【详解】试题分析:比例尺是指图上距离与实际距离的比,由此计算解答即可.
解:120千米=12000000厘米;
6:12000000=1:2000000;
故答案为错误.
点评:解答此题的关键是要掌握比例尺的计算方法,更重要的是在计算时,单位一定要统一.
23.√
【分析】打几折,就是按原价的百分之几十出售,据此解答即可。
【详解】由分析可得:一台冰箱按原价的85%出售,这台冰箱是打八五折出售的,原题说法正确。
故答案为:√
【点睛】此题主要考查了折的含义的理解,解答此题的关键是要明确:打几折,就是按原价的百分之几十出售。
24.错误
【详解】略
25.×
【分析】缺勤率=缺勤人数÷(出勤人数+缺勤人数)×100%。
【详解】2÷(50+2)×100%
≈0.038×100%
=3.8%
故答案为:×
26.;;;68
;;2;
【解析】略
27.(1)5;(2)6;(3)5
【分析】(1)根据运算顺序,先计算小括号里的减法,再计算中括号里的除法,最后计算括号外的乘法;
(2)根据运算顺序,先计算除法,再根据减法的性质,把式子转化为8-(+)进行简算;
(3)把33看作32+1,再根据乘法分配律,把式子转化为32×+进行简算。
【详解】(1)×[÷(-)]
=×[÷]
=×[×10]
=×
=5
(2)8-÷-
=8-×-
=8--
=8-(+)
=8-2
=6
(3)33×
=(32+1)×
=32×+
=5+
=
28.(1)x=4;(2)x=1;(3)x=8
【分析】(1)根据比例的基本性质,把方程转化为x=7×,再化简方程,最后根据等式的性质,方程两边同时除以即可;
(2)先化简方程,再根据等式的性质,方程两边同时加上0.2x,再同时减去,最后同时除以0.2即可;
(3)根据比例的基本性质,把方程转化为×3x=34×,再化简方程,最后根据等式的性质,方程两边同时除以即可。
【详解】(1)7∶x=∶
解:x=7×
x=3
x÷=3÷
x=4
(2)1.5×0.4-20%x=
解:0.6-0.2x=
0.6-0.2x+0.2x=+0.2x
+0.2x=0.6
+0.2x-=0.6-
0.2x=0.2
0.2x÷0.2=0.2÷0.2
x=1
(3)=∶
解:×3x=34×
x=4
x÷=4÷
x=8
29.80×(1+)=100
【解析】略
30.(1)31.4cm
(2)78.5cm2
(3)376.8cm2
(4)942cm3
【详解】(1)C底=лd=31.4(cm)
(2)S底=лr2=78.5(cm2)
(3)S侧=C底h=376.8(cm2)
(4)V=S底h=942(cm3)
31.15.7平方厘米
【详解】3.14×(32-22)=15.7(平方厘米)
32.成活率92%;死亡率8%
【分析】先求出死亡率,死亡率是指死亡的棵数占总棵数的百分比,用死亡的棵数除以总棵数乘100%,即可求出死亡率,再用1减死亡率就是成活率,据此解答。
【详解】死亡率:
(50-46)÷50×100%
=4÷50×100%
=0.08×100%
=8%
成活率:1-8%=92%
答:这批树的成活率是92%,死亡率是8%。
【点睛】解决本题关键是理解成活率和死亡率的含义,知道成活率+死亡率=1。
33.25平方厘米
【分析】长方形a和长方形b的宽相等,则a和b的面积之比等于长的比,也就是AE与BE的比。长方形d和长方形c的宽相等,则d和c的面积之比等于长的比,也是AE与BE的比。根据a和b的面积,求出AE与BE的比,然后求出d的面积。
【详解】
AE∶BE=5∶7
(平方厘米)
答:长方形d的面积为25平方厘米。
【点睛】宽相等时,长方形的面积之比等于长的比。根据题目给出的面积求出边的比是解答此题的关键。
34.900双
【分析】根据总价÷单价=数量,据此代入数值进行计算即可。
【详解】36÷=900(双)
答:这个饭店每周要用掉900双一次性筷子。
【点睛】本题考查经济问题,明确单价、数量和总价之间的关系是解题的关键。
35.(1)东,北,48;(2)北,西,60;
(3)见详解
【分析】根据图示方向可知上北下南,左西右东,结合图上数据可解。
【详解】(1)A岛的位置在东偏北方向上,距离雷达站48km;
(2)B岛的位置在北偏西方向上,距离雷达站60km;
(3)根据B岛距离可画出C的距离,作图如下:
【点睛】此题考查的是位置方向,在第(3)小题的解答中,应提醒学生在图上标出角度和距离,画线段时则可将“雷达站到B岛的距离”作为参照。
36.解:18÷(3-2)×(3+2)=90(千米)
90÷6×=10(千米)
答:乙每小时行10千米.
【详解】略
37.0.785平方厘米
【分析】圆心确定圆的位置,半径确定圆的大小,由此以点O为圆心,以1厘米为半径,即可画出这个圆,因为圆周角为360°,所以用以圆的任意一条半径为扇形的边,再利用量角器画出圆心角为90°的扇形,根据扇形面积公式:S=πr2×,把数据代入公式求出这个扇形的面积。
【详解】作图如下:
(平方厘米)
答:这个扇形的面积是平方厘米。
【点睛】此题考查的目的是理解掌握圆的画法、扇形面积公式的灵活运用,关键是熟记公式。
38.70千米
【详解】(1÷)×20÷(1-)=70(千米)
2023-2024学年小升初分班考数学押题卷02【湖北省专用】(人教版): 这是一份2023-2024学年小升初分班考数学押题卷02【湖北省专用】(人教版),共16页。
2023-2024学年小升初分班考数学押题卷02【青海专用】(人教版): 这是一份2023-2024学年小升初分班考数学押题卷02【青海专用】(人教版),共16页。
2023-2024学年小升初分班考数学押题卷02【宁夏专用】(人教版): 这是一份2023-2024学年小升初分班考数学押题卷02【宁夏专用】(人教版),共17页。试卷主要包含了-0.06等内容,欢迎下载使用。