专题28以圆为载体的几何综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(教师版含解析)
展开
这是一份专题28以圆为载体的几何综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(教师版含解析),共70页。
【例1】(2022·河北·育华中学三模)如图,在四边形ABCD中,∠A=∠B=90°,AD=4,BC=10,sinC=45,以AB为直径作⊙O,把⊙O沿水平方向平移x个单位,得到⊙O′,A'B'为直径AB平移后的对应线段.
(1)当x=0,且M为⊙O上一点时,求DM的最大值;
(2)当B′与C重合时,设⊙O′与CD相交于点N,求点N到AB的距离;
(3)当⊙O′与CD相切时,直接写出x的值 .
【答案】(1)42+4
(2)15425
(3)2或12.
【分析】(1)当x=0,连接DO并延长交⊙O于点M,则此时DM的值最大,过点D作DE⊥BC于E,易证四边形ABED是矩形,可得AB=DE,AD=BE=4,解Rt△DEC求出DE=8,CD=10,可得⊙O的半径为4,利用勾股定理求出OD,即可得到DM的最大值;
(2)当B′与C重合时,⊙O′与CD相交于点N,则⊙O向右平移了10个单位长度,连接OO′,则OO′=10,连接A′N,过点N作NF⊥A′B′于点F,如图,解Rt△A′B′N,求出A′N,B′N,然后根据等积法求出NF即可解决问题;
(3)当⊙O′与CD相切,在CD的左边时,设切点为P,如图,则A′B′ED是矩形,A′D、CD、B′C都是⊙O′的切线,根据切线长定理可得A′D=PD,B′C=PC,求出A′D=4−x,B′C=10−x,根据CD=PD+PC=A′D+B′C列方程求出x即可;当⊙O′与CD相切,在CD的右边时,同理求解即可.
(1)
解:如图,当x=0,连接DO并延长交⊙O于点M,则此时DM的值最大,过点D作DE⊥BC于E,
∵∠A=∠B=∠DEB=90°,
∴四边形ABED是矩形,
∴AB=DE,AD=BE=4,
∴EC=BC-BE=10-4=6,
∵在Rt△DEC中,sinC=DECD=45,
∴设DE=4k,CD=5k(k>0),
由勾股定理得:EC2+DE2=CD2,即62+4k2=5k2,
整理得:k2=4,
∵k>0,
∴k=2,
∴DE=4k=8,CD=5k=10,
∴AB=DE=8,
∴OA=OB=4,
∴OD=42+42=42,
∴DM=42+4,
即DM的最大值为42+4;
(2)
当B′与C重合时,⊙O′与CD相交于点N,则⊙O向右平移了10个单位长度,连接OO′,则OO′=10,连接A′N,过点N作NF⊥A′B′于点F,如图,则∠A′NB′=90°,
在Rt△CDE中,sin∠CDE=CECD=35,cs∠CDE=DECD=45,
∵A′B′∥AB∥DE,
∴∠A′B′N=∠CDE,
在Rt△A′B′N中,A′B′=AB=8,
∵sin∠A′B′N=A′NA′B′=sin∠CDE=35,cs∠A′B′N=B′NA′B′=cs∠CDE=45,
∴A′N=35A′B′=35×8=245,B′N=45A′B′=45×8=325,
∵S△A′B′N=12A′B′⋅NF=12A′N⋅B′N,
∴NF=A′N⋅B′NA′B′=245×3258=9625,
∴点N到AB的距离为OO′−NF=10−9625=15425;
(3)
当⊙O′与CD相切,在CD的左边时,设切点为P,如图,则A′B′ED是矩形,A′D、CD、B′C都是⊙O′的切线,
∴A′D=PD,B′C=PC,
∵AA′=BB′=x,
∴A′D=4−x,B′C=10−x,
∵CD=PD+PC=A′D+B′C,
∴10=4−x+10−x,
解得:x=2;
当⊙O′与CD相切,在CD的右边时,设切点为Q,如图,则ABB′A′是矩形,A′D、CD、B′C都是⊙O′的切线,
∴A′D=QD,B′C=QC,
∵AA′=BB′=x,
∴A′D=x−4,B′C=x−10,
∵CD=QD+QC=A′D+B′C,
∴10=x−4+x−10,
解得:x=12;
综上,当⊙O′与CD相切时,x的值为2或12,
故答案为:2或12.
【点睛】本题主要考查了矩形的判定,解直角三角形,勾股定理,点与圆的位置关系,平移的性质,圆周角定理,切线的性质以及切线长定理等知识,熟练掌握直径所对的圆周角是直角,从圆外一点引圆的两条切线,它们的切线长相等是解题的关键.
【例2】(2022·黑龙江哈尔滨·中考真题)已知CH是⊙O的直径,点A,点B是⊙O上的两个点,连接OA,OB,点D,点E分别是半径OA,OB的中点,连接CD,CE,BH,且∠AOC=2∠CHB.
(1)如图1,求证:∠ODC=∠OEC;
(2)如图2,延长CE交BH于点F,若CD⊥OA,求证:FC=FH;
(3)如图3,在(2)的条件下,点G是BH上一点,连接AG,BG,HG,OF,若AG:BG=5:3,HG=2,求OF的长.
【答案】(1)见解析
(2)见解析
(3)OF=193
【分析】(1)根据SAS证明△COD≅△COE即可得到结论;
(2)证明∠H=∠ECO即可得出结论;
(3)先证明OF⊥CH,连接AH,证明AH=BH,设AG=5x,BG=3x,在AG上取点M,使得AM=BG,连接MH,证明△MHG为等边三角形,得MG=HG=2,根据AG=AM+MG可求出x=1,得AG=5,BG=3,过点H作HN⊥MG于点N,求出HB=19,再证HF=2OF,根据HB=3OF=19可得结论.
(1)
如图1.∵点D,点E分别是半径OA,OB的中点
∴OD=12OA,OE=12OB
∵OA=OB,
∴OD=OE
∵∠BOC=2∠CHB,∠AOC=2∠CHB
∴∠AOC=∠BOC
∵OC=OC
∴△COD≅△COE,
∴∠CDO=∠CEO;
(2)
如图2.∵CD⊥OA,
∴∠CDO=90°
由(1)得∠CEO=∠CDO=90°,
∴sin∠OCE=OEOC=12
∴∠OCE=30°,
∴∠COE=90°−∠OCE=60°
∵∠H=12∠BOC=12×60°=30°
∴∠H=∠ECO,
∴FC=FH
(3)
如图3.∵CO=OH,FC=FH
∴OF⊥CH
∴∠FOH=90°
连接AH.∵∠AOC=∠BOC=60°
∴∠AOH=∠BOH=120°,
∴AH=BH,∠AGH=60°
∵AG:BG=5:3
设AG=5x,
∴BG=3x
在AG上取点M,使得AM=BG,连接MH
∵∠HAM=∠HBG,
∴△HAM≌△HBG
∴MH=GH,
∴△MHG为等边三角形
∴MG=HG=2
∵AG=AM+MG,
∴5x=3x+2
∴x=1,
∴AG=5
∴BG=AM=3,
过点H作HN⊥MG于点N
MN=12GM=12×2=1,HN=HG⋅sin60°=3
∴AN=MN+AM=4,
∴HB=HA=NA2+HN2=19
∵∠FOH=90°,∠OHF=30°,
∴∠OFH=60°
∵OB=OH,
∴∠BHO=∠OBH=30°,
∴∠FOB=∠OBF=30°
∴OF=BF,
在Rt△OFH中,∠OHF=30°,
∴HF=2OF
∴HB=BF+HF=3OF=19,
∴OF=193.
【点睛】本题主要考查了圆周角定理,等边三角形的判定和性质,全等三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形等知识,正确作出辅助线构造全等三角形是解答本题的关键.
【例3】(2022·黑龙江绥化·中考真题)如图所示,在⊙O的内接△AMN中,∠MAN=90°,AM=2AN,作AB⊥MN于点P,交⊙O于另一点B,C是AM上的一个动点(不与A,M重合),射线MC交线段BA的延长线于点D,分别连接AC和BC,BC交MN于点E.
(1)求证:△CMA∽△CBD.
(2)若MN=10,MC=NC,求BC的长.
(3)在点C运动过程中,当tan∠MDB=34时,求MENE的值.
【答案】(1)证明见解析
(2)310
(3)32
【分析】(1)利用圆周角定理得到∠CMA=∠ABC,再利用两角分别相等即可证明相似;
(2)连接OC,先证明MN是直径,再求出AP和NP的长,接着证明△COE∽△BPE,利用相似三角形的性质求出OE和PE,再利用勾股定理求解即可;
(3)先过C点作CG⊥MN,垂足为G,连接CN,设出GM=3x,CG=4x,再利用三角函数和勾股定理分别表示出PB和PG,最后利用相似三角形的性质表示出EG,然后表示出ME和NE,算出比值即可.
(1)
解:∵AB⊥MN,
∴∠APM=90°,
∴∠D+∠DMP=90°,
又∵∠DMP+∠NAC=180°,∠MAN=90°,
∴∠DMP+∠CAM=90°,
∴∠CAM=∠D,
∵∠CMA=∠ABC,
∴△CMA∽△CBD.
(2)
连接OC,
∵∠MAN=90°,
∴MN是直径,
∵MN=10,
∴OM=ON=OC=5,
∵AM=2AN,且AM2+AN2=MN2,
∴AN=25,AM=45,
∵S△AMN=12AM⋅AN=12MN⋅AP,
∴AP=4,
∴BP=AP=4,
∴NP=AN2−AP2=2,
∴OP=5−2=3,
∵MC=NC,
∴OC⊥MN,
∴∠COE=90°,
∵AB⊥MN,
∴∠BPE=90°,
∴∠BPE=∠COE,
又∵∠BEP=∠CEO,
∴△COE∽△BPE
∴COBP=OEPE=CEBE,
即54=OEPE=CEBE
由OE+PE=OP=3,
∴OE=53,PE=43,
∴CE=OC2+OE2=52+532=5310,
BE=BP2+PE2=42+432=4310,
∴BC=5310+4310=310.
(3)
过C点作CG⊥MN,垂足为G,连接CN,则∠CGM=90°,
∴∠CMG+∠GCM=90°,
∵MN是直径,
∴∠MCN=90°,
∴∠CNM+∠DMP=90°,
∵∠D+∠DMP=90°,
∴∠D=∠CNM=∠GCM,
∵tan∠MDB=34,
∴tan∠CNM=tan∠GCM=34,
∵tan∠GCM=GMCG
∴设GM=3x,CG=4x,
∴CM=5x,
∴CN=20x3, NG=16x3,
∴NM=25x3,
∴OM=ON=25x6,
∵AM=2AN,且AM2+AN2=MN2,
∴AN=553x,AM=1053x,
∵S△AMN=12AM⋅AN=12MN⋅AP,
∴AP=103x=PB,
∴NP=53x,
∴PG=163x−53x=113x,
∵∠CGE=∠BPE=90°,∠CEG =∠BEP,
∴△CGE∽△BPE,
∴CGBP=GEPE=CEBE,
即4x103x=GEPE=CEBE
∴GE=2x,PE=53x
∴ME=5x,NE=10x3,
∴ME:NE=3:2,
∴MENE的值为32.
【点睛】本题考查了圆的相关知识、相似三角形的判定与性质、三角函数、勾股定理等知识,涉及到了动点问题,解题关键是构造相似三角形,正确表示出各线段并找出它们的关系,本题综合性较强,属于压轴题.
【例4】(2022·湖北荆州·中考真题)如图1,在矩形ABCD中,AB=4,AD=3,点O是边AB上一个动点(不与点A重合),连接OD,将△OAD沿OD折叠,得到△OED;再以O为圆心,OA的长为半径作半圆,交射线AB于G,连接AE并延长交射线BC于F,连接EG,设OA=x.
(1)求证:DE是半圆O的切线;
(2)当点E落在BD上时,求x的值;
(3)当点E落在BD下方时,设△AGE与△AFB面积的比值为y,确定y与x之间的函数关系式;
(4)直接写出:当半圆O与△BCD的边有两个交点时,x的取值范围.
【答案】(1)见详解
(2)32
(3)y=9x24x2+36(0
相关试卷
这是一份专题27以相似为载体的几何综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(教师版含解析),共70页。试卷主要包含了,连接DG等内容,欢迎下载使用。
这是一份2024年中考数学压轴题之学霸秘笈大揭秘专题28以圆为载体的几何综合问题(原卷版+解析),共84页。
这是一份中考数学压轴题之学霸秘笈大揭秘(全国通用)专题28以圆为载体的几何综合问题(全国通用)(原卷版+解析),共77页。