年终活动
搜索
    上传资料 赚现金

    中考强化练习湖南省邵阳县中考数学三模试题(精选)

    立即下载
    加入资料篮
    中考强化练习湖南省邵阳县中考数学三模试题(精选)第1页
    中考强化练习湖南省邵阳县中考数学三模试题(精选)第2页
    中考强化练习湖南省邵阳县中考数学三模试题(精选)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考强化练习湖南省邵阳县中考数学三模试题(精选)

    展开

    这是一份中考强化练习湖南省邵阳县中考数学三模试题(精选),共24页。
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在中,,,.把绕点顺时针旋转后,得到,如图所示,则点所走过的路径长为( )
    A.B.C.D.
    2、已知单项式5xayb+2的次数是3次,则a+b的值是( )
    A.1B.3C.4D.0
    3、若和是同类项,且它们的和为0,则mn的值是( )
    A.-4B.-2C.2D.4
    4、将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=45°,那么∠BAF的大小为( )
    A.15°B.10°C.20°D.25°
    5、下面的图形中,是轴对称图形但不是中心对称图形的是( )
    A.B.C.D.
    6、如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边于,点,若点为边的中点,点为线段上一动点,则周长的最小值为( )
    A.B.C.D.
    7、整式的值随x取值的变化而变化,下表是当x取不同值时对应的整式的值:
    则关于x的方程的解为( )
    A.B.C.D.
    8、如图是由一些完全相同的小立方块搭成的几何体从左面、上面看到的形状图.搭成这个几何体所用的小立方块的个数至少是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.3个B.4个C.5个D.6个
    9、下列不等式中,是一元一次不等式的是( )
    A.B.C.D.
    10、如图,将一副三角板平放在一平面上(点D在上),则的度数为( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,正方形 边长为 ,则 _____________
    2、已知点P是线段AB的黄金分割点,AP>PB.若AB=2,则AP=_____.
    3、计算:__.
    4、如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行.反比例函数y=(k≠0)的图象,与大正方形的一边交于点A(,4),且经过小正方形的顶点B.求图中阴影部分的面积为 _____.
    5、如图,在中,,,BE是高,且点D,F分别是边AB,BC的中点,则的周长等于______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,直线l:与y轴交于点G,直线l上有一动点P,过点P作y轴的平行线PE,过点G作x轴的平行线GE,它们相交于点E.将△PGE沿直线l翻折得到△PGE′,点E的对应点为E′.
    (1)如图1,请利用无刻度的直尺和圆规在图1中作出点E的对应点E′;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)如图2,当点E的对应点E′落在x轴上时,求点P的坐标;
    (3)如图3,直线l上有A,B两点,坐标分别为(-2,-6),(4,6),当点P从点A运动到点B的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.
    2、请根据学习“一次函数”时积累的经验和方研究函数的图象和性质,并解决问题.

    (1)填空:
    ①当x=0时, ;
    ②当x>0时, ;
    ③当x<0时, ;
    (2)在平面直角坐标系中作出函数的图象;
    (3)观察函数图象,写出关于这个函数的两条结论;
    (4)进一步探究函数图象发现:
    ①函数图象与轴有 个交点,方程有 个解;
    ②方程有 个解;
    ③若关于的方程无解,则的取值范围是 .
    3、如图,在的正方形格纸中,是以格点为顶点的三角形,也称为格点三角形,请你在该正方形格纸中画出与成轴对称的所有的格点三角形(用阴影表示).
    4、如图,点A在的一边OA上.按要求画图并填空.
    (1)过点A画直线,与的另一边相交于点B;
    (2)过点A画OB的垂线AC,垂足为点C;
    (3)过点C画直线,交直线AB于点D;
    (4)直接写出______°;
    (5)如果,,,那么点A到直线OB的距离为______.
    5、如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE(AC﹣AB).
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    -参考答案-
    一、单选题
    1、D
    【分析】
    根据勾股定理可将AB的长求出,点B所经过的路程是以点A为圆心,以AB的长为半径,圆心角为90°的扇形.
    【详解】
    解:在Rt△ABC中,AB=,
    ∴点B所走过的路径长为=
    故选D.
    【点睛】
    本题主要考查了求弧长,勾股定理,解题关键是将点B所走的路程转化为求弧长,使问题简化.
    2、A
    【分析】
    根据单项式的次数的概念求解.
    【详解】
    解:由题意得:a+b+2=3,
    ∴a+b=1.
    故选:A.
    【点睛】
    本题考查了单项式的有关概念,解答本题的关键是掌握单项式的次数:所有字母的指数和.
    3、B
    【分析】
    根据同类项的定义得到2+m=3,n-1=-3, 求出m、n的值代入计算即可.
    【详解】
    解:∵和是同类项,且它们的和为0,
    ∴2+m=3,n-1=-3,
    解得m=1,n=-2,
    ∴mn=-2,
    故选:B.
    【点睛】
    此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.
    4、A
    【分析】
    利用DE∥AF,得∠CDE=∠CFA=45°,结合∠CFA=∠B+∠BAF计算即可.
    【详解】
    ∵DE∥AF,
    ∴∠CDE=∠CFA=45°,
    ∵∠CFA=∠B+∠BAF,∠B=30°,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴∠BAF=15°,
    故选A.
    【点睛】
    本题考查了平行线的性质,三角形外角的性质,三角板的意义,熟练掌握平行线的性质是解题的关键.
    5、D
    【分析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,是中心对称图形,故此选项不符合题意;
    B、不是轴对称图形,是中心对称图形,故此选项不符合题意;
    C、不是轴对称图形,是中心对称图形,故此选项不符合题意;
    D、是轴对称图形,不是中心对称图形,故此选项符合题意;
    故选:D.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    6、C
    【分析】
    连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
    【详解】
    解:连接AD,
    ∵△ABC是等腰三角形,点D是BC边的中点,
    ∴AD⊥BC,
    ∴,解得AD=10,
    ∵EF是线段AC的垂直平分线,
    ∴点C关于直线EF的对称点为点A,
    ∴AD的长为CM+MD的最小值,
    ∴△CDM的周长最短=CM+MD+CD=AD+.
    故选:C.
    【点睛】
    本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
    7、A
    【分析】
    根据等式的性质把变形为;再根据表格中的数据求解即可.
    【详解】
    解:关于x的方程变形为,
    由表格中的数据可知,当时,;
    故选:A.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题考查了等式的性质,解题关键是恰当地进行等式变形,根据表格求解.
    8、C
    【分析】
    根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,从而得到上层至少1块,底层2行至少有3+1=4块,即可求解.
    【详解】
    解:根据从左面看到的形状图,可得该几何体由2层,2行;从上面看到的形状图可得有2行,3列,
    所以上层至少1块,底层2行至少有3+1=4块,
    所以搭成这个几何体所用的小立方块的个数至少是1+4=5块.
    故选:C
    【点睛】
    本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)从正面看:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)从左面看:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)从上面看:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
    9、B
    【分析】
    根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.
    【详解】
    A、不等式中含有两个未知数,不符合题意;
    B、符合一元一次不等式的定义,故符合题意;
    C、没有未知数,不符合题意;
    D、未知数的最高次数是2,不是1,故不符合题意.
    故选:B
    【点睛】
    本题考查一元一次不等式的定义,掌握其定义是解决此题关键.
    10、B
    【分析】
    根据三角尺可得,根据三角形的外角性质即可求得
    【详解】
    解:
    故选B
    【点睛】
    本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.
    二、填空题
    1、##
    【解析】
    【分析】
    根据正方形的性质可得,过E作EG⊥BC于G,证明三角形EGC是等腰直角三角形,再根据直角三角形BEG利用勾股定理列方程即可.
    【详解】
    过E作EG⊥BC于G
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵正方形 边长为2
    ∴,


    ∴三角形EGC是等腰直角三角形
    ∴,
    在Rt△BEG中,

    解得:


    【点睛】
    本题考查正方形的性质及勾股定理,解题的关键是证明三角形EGC是等腰直角三角形,最终根据勾股定理列方程计算即可.
    2、##
    【解析】
    【分析】
    根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.
    【详解】
    解:由于P为线段AB=2的黄金分割点,且AP是较长线段;
    则AP=2×=,
    故答案为:.
    【点睛】
    本题考查了黄金分割点即线段上一点把线段分成较长和较短的两条线段,且较长线段的平方等于较短线段与全线段的积,熟练掌握黄金分割点的公式是解题的关键.
    3、
    【解析】
    【分析】
    有理数的混合运算,此题中先算乘方,再算减法即可.
    【详解】

    故答案为:.
    【点睛】
    此题考查有理数的混合运算,熟练掌握有理数混合运算顺序是解题关键.
    4、40
    【解析】
    【分析】
    根据待定系数法求出即可得到反比例函数的解析式;利用反比例函数系数的几何意义求出小正方形的面积,再求出大正方形在第一象限的顶点坐标,得到大正方形的面积,根据图中阴影部分的面积· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    大正方形的面积小正方形的面积即可求出结果.
    【详解】
    解:反比例函数的图象经过点,

    反比例函数的解析式为;
    小正方形的中心与平面直角坐标系的原点重合,边分别与坐标轴平行,
    设点的坐标为,
    反比例函数的图象经过点,


    小正方形的面积为,
    大正方形的中心与平面直角坐标系的原点重合,边分别与坐标轴平行,且,
    大正方形在第一象限的顶点坐标为,
    大正方形的面积为,
    图中阴影部分的面积大正方形的面积小正方形的面积.
    【点睛】
    本题主要考查了待定系数法求反比例函数的解析式,反比例函数系数的几何意义,正方形的性质,熟练掌握反比例函数系数的几何意义是解决问题的关键.
    5、20
    【解析】
    【分析】
    由题意易AF⊥BC,则有,然后根据直角三角形斜边中线定理可得,进而问题可求解.
    【详解】
    解:∵,F是边BC的中点,
    ∴AF⊥BC,
    ∵BE是高,
    ∴,
    ∵点D,F分别是边AB,BC的中点,,,
    ∴,
    ∴;
    故答案为20.
    【点睛】
    本题主要考查等腰三角形的性质及直角三角形斜边中线定理,熟练掌握等腰三角形的性质及直角三角形斜边中线定理是解题的关键.
    三、解答题
    1、
    (1)见解析
    (2)
    (3)6
    【分析】
    (1)作出过点E的l的垂线即可解决;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)设直线l交x轴于点D,则由直线解析式可求得点D、点G的坐标,从而可得OD的长.由对称性及平行可得,设点P的坐标为(a,2a-2),则可得点E的坐标,由及勾股定理可求得点的坐标;
    (3)分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长,故只要求得CM的长即可,由A、B两点的坐标即可求得CM的长.
    (1)
    所作出点E的对应点E′如下图所示:
    (2)
    设直线l交x轴于点D
    在y=2x-2中,令y=0,得x=1;令x=0,得y=-2
    则点D、点G的坐标分别为(1,0)、(0,-2)
    ∴OD=1,OG=2
    由对称性的性质得:,
    ∵GE∥x轴




    设点P的坐标为(a,2a-2),其中a>0,则可得点E的坐标为(a,-2)
    ∴EG=a


    在Rt△中,由勾股定理得:
    解得:
    当时,
    所以点P的坐标为
    (3)
    分别过点A、B作y轴的平行线,与过点G的垂直于y轴的直线分别交于点C、M,则点E在线段CM上运动,根据对称性知,点运动路径的长度等于CM的长
    ∵A,B两点的坐标分别为(-2,-6),(4,6)
    ∴CM=4-(-2)=6
    则点运动路径的长为6
    故答案为:6
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题主要考查了一次函数的图象与性质、折叠的性质、尺规作图等知识,一次函数的性质及折叠的性质的应用是本题的关键.
    2、(1)2;-x+2,x+2;(2)见解析;(3)函数图象关于y轴对称;当x=0时,y有最大值2;(4)①2 2;②1;③.
    【分析】
    (1)利用绝对值的意义,分别代入计算,即可得到答案;
    (2)结合(1)的结论,画出分段函数的图像即可;
    (3)结合函数图像,归纳出函数的性质即可;
    (4)结合函数图像,分别进行计算,即可得到答案;
    【详解】
    解:(1)①当x=0时,;
    ②当x>0时,;
    ③当x<0时,;
    故答案为:2;x+2;x+2;
    (2)函数y=|x|+2的图象,如图所示:
    (3)函数图象关于y轴对称;
    当x=0时,y有最大值2.(答案不唯一)
    (4)①函数图象与轴有2个交点,方程有2个解;
    ②方程有1个解;
    ③若关于的方程无解,则的取值范围是.
    故答案为:2;2;1;.
    【点睛】
    本题考查了一次函数的图像和性质,绝对值的意义,解题的关键是熟练掌握题意,正确的画出图像.
    3、见详解
    【分析】
    先找对称轴,再得到个点的对应点,即可求解.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解:根据题意画出图形,如下图所示:
    【点睛】
    本题主要考查了画轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
    4、(1)图见解析;(2)图见解析;(3)图见解析;(4)90;(5).
    【分析】
    (1)根据垂线的画法即可得;
    (2)根据垂线的画法即可得;
    (3)根据平行线的画法即可得;
    (4)根据平行线的性质可得;
    (5)利用三角形的面积公式即可得.
    【详解】
    解:(1)如图,直线即为所求;
    (2)如图,垂线即为所求;
    (3)如图,直线即为所求;
    (4),



    故答案为:90;
    (5),
    ,即,
    解得,
    即点到直线的距离为,
    故答案为:.
    【点睛】
    本题考查了画垂线和平行线、平行线的性质、点到直线的距离等知识点,熟练掌握平行线的画法和性质是解题关键.
    5、见解析
    【分析】
    根据全等三角形的判定与性质,可得∠ABF=∠AFB,AB=AF,BE=EF,根据三角形外角的性质,可得∠C+∠CBF=∠AFB=∠ABF,根据角的和差、等量代换,可得∠CBF=∠C,根据等腰三角形的判定,可得BF=CF,根据线段的和差、等式的性质,可得答案
    【详解】
    证明:如图:延长BE交AC于点F,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵BF⊥AD,
    ∴∠AEB=∠AEF.
    ∵AD平分∠BAC
    ∴∠BAE=∠FAE
    在△ABE和△AFE中,
    ∴△ABE≌△AFE (ASA)
    ∴∠ABF=∠AFB, AB=AF, BE=EF
    ∵∠C+∠CBF=∠AFB=∠ABF
    ∴∠ABF+∠CBF=∠ABC=3∠C
    ∴∠C+2∠CBF=3∠C
    ∴∠CBF=∠C
    ∴BF=CF
    ∴BE=BF=CF
    ∵CF=AC-AF=AC-AB
    ∴BE= (AC-AB)
    【点睛】
    本题考查了等腰三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质,等量代换,等式的性质,利用等量代换得出∠CBF=∠C是解题关键
    x
    -1
    0
    1
    2
    3
    -8
    -4
    0
    4
    8

    相关试卷

    中考强化练习湖南省岳阳市中考数学三模试题(含详解):

    这是一份中考强化练习湖南省岳阳市中考数学三模试题(含详解),共27页。试卷主要包含了下列计算中,正确的是,不等式的最小整数解是等内容,欢迎下载使用。

    中考强化练习湖南省常德市中考数学一模试题(精选):

    这是一份中考强化练习湖南省常德市中考数学一模试题(精选),共26页。试卷主要包含了下列图像中表示是的函数的有几个,下列方程变形不正确的是等内容,欢迎下载使用。

    中考强化练习湖南省邵阳县中考数学模拟测评 (A)卷(含答案详解):

    这是一份中考强化练习湖南省邵阳县中考数学模拟测评 (A)卷(含答案详解),共24页。试卷主要包含了已知,则的补角等于,如图,A,下列运算正确的是,下列语句中,不正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map