终身会员
搜索
    上传资料 赚现金

    中考强化练习河北省中考数学模拟考试 A卷(含答案详解)

    立即下载
    加入资料篮
    中考强化练习河北省中考数学模拟考试 A卷(含答案详解)第1页
    中考强化练习河北省中考数学模拟考试 A卷(含答案详解)第2页
    中考强化练习河北省中考数学模拟考试 A卷(含答案详解)第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考强化练习河北省中考数学模拟考试 A卷(含答案详解)

    展开

    这是一份中考强化练习河北省中考数学模拟考试 A卷(含答案详解),共34页。
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,O是直线AB上一点,则图中互为补角的角共有( )
    A.1对B.2对C.3对D.4对
    2、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
    A.30km/hB.60km/hC.70km/hD.90km/h
    3、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( )
    A.16B.19C.24D.36
    4、下列不等式中,是一元一次不等式的是( )
    A.B.C.D.
    5、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.米B.10米C.米D.12米
    6、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于( )
    A.19°B.20°C.24°D.25°
    7、如图,在中,,D是BC的中点,垂足为D,交AB于点E,连接CE.若,,则BE的长为( )
    A.3B.C.4D.
    8、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )
    A.B.C.D.
    9、如图,点,,若点P为x轴上一点,当最大时,点P的坐标为( )
    A.B.C.D.
    10、有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是( )
    A.|a|>|b|B.a+b<0C.a﹣b<0D.ab>0
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在中,,,与分别是斜边上的高和中线,那么_______度.
    2、如图是正方体的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,那么在正方体的表面与“!”相对的汉字是________.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    3、如图,和均为等边三角形,,分别在边,上,连接,,若,则__________.
    4、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,则D的坐标为_______,连接AC,BD.在y轴上存在一点P,连接PA,PB,使S四边形ABDC,则点P的坐标为_______.
    5、如图,小张同学用两个互相垂直的长方形制作了一个“中”字,请根据图中信息用含x的代数式表示该“中”字的面积__________.
    三、解答题(5小题,每小题10分,共计50分)
    1、定义:若图形与图形有且只有两个公共点,则称图形与图形互为“双联图形”,即图形是图形的“双联图形”,图形是图形的“双联图形”.
    (1)如图1,在平面直角坐标系中,的半径为2,下列函数图象中与互为“双联图形”的是________(只需填写序号);
    ①直线;②双曲线;③抛物线.
    (2)若直线与抛物线互为“双联图形”,且直线不是双曲线的“双联图形”,求实数的取值范围;
    (3)如图2,已知,,三点.若二次函数的图象与互为“双联图形”,直接写出的取值范围.
    2、已知:在四边形中,于E,且.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)如图1,求的度数;
    (2)如图2,平分交于F,点G在上,连接,且.求证:;
    (3)如图3,在(2)的条件下,,过点F作,且,若,求线段的长.
    3、我们定义:在等腰三角形中,腰与底的比值叫做等腰三角形的正度.如图1,在△ABC中,AB=AC,的值为△ABC的正度.
    已知:在△ABC中,AB=AC,若D是△ABC边上的动点(D与A,B,C不重合).
    (1)若∠A=90°,则△ABC的正度为 ;
    (2)在图1,当点D在腰AB上(D与A、B不重合)时,请用尺规作出等腰△ACD,保留作图痕迹;若△ACD的正度是,求∠A的度数.
    (3)若∠A是钝角,如图2,△ABC的正度为,△ABC的周长为22,是否存在点D,使△ACD具有正度?若存在,求出△ACD的正度;若不存在,说明理由.
    4、如图,点A在的一边OA上.按要求画图并填空.
    (1)过点A画直线,与的另一边相交于点B;
    (2)过点A画OB的垂线AC,垂足为点C;
    (3)过点C画直线,交直线AB于点D;
    (4)直接写出______°;
    (5)如果,,,那么点A到直线OB的距离为______.
    5、如图,直线l:与y轴交于点G,直线l上有一动点P,过点P作y轴的平行线PE,过点G作x轴的平行线GE,它们相交于点E.将△PGE沿直线l翻折得到△PGE′,点E的对应点为E′.
    (1)如图1,请利用无刻度的直尺和圆规在图1中作出点E的对应点E′;
    (2)如图2,当点E的对应点E′落在x轴上时,求点P的坐标;
    (3)如图3,直线l上有A,B两点,坐标分别为(-2,-6),(4,6),当点P从点A运动到点B的过程中,点E′也随之运动,请直接写出点E′的运动路径长为____________.
    -参考答案-
    一、单选题
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    1、B
    【分析】
    根据补角定义解答.
    【详解】
    解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,
    故选:B.
    【点睛】
    此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
    2、B
    【分析】
    直接观察图象可得出结果.
    【详解】
    解:根据函数图象可知:t=1时,y=90;
    ∵汽车是从距离某城市30km开始行驶的,
    ∴该汽车行驶的速度为90-30=60km/h,
    故选:B.
    【点睛】
    本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
    3、C
    【分析】
    分别求出各视图的面积,故可求出表面积.
    【详解】
    由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5
    故表面积为2×(4+3+5)=24
    故选C.
    【点睛】
    此题主要考查三视图的求解与表面积。解题的关键是熟知三视图的性质特点.
    4、B
    【分析】
    根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.
    【详解】
    A、不等式中含有两个未知数,不符合题意;
    B、符合一元一次不等式的定义,故符合题意;
    C、没有未知数,不符合题意;
    D、未知数的最高次数是2,不是1,故不符合题意.
    故选:B
    【点睛】
    本题考查一元一次不等式的定义,掌握其定义是解决此题关键.
    5、B
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    6、B
    【分析】
    根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.
    【详解】
    ∵BD的垂直平分线交AB于点E,



    ∵将沿AD折叠,点C恰好与点E重合,
    ∴,,





    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    故选:B.
    【点睛】
    本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.
    7、D
    【分析】
    勾股定理求出CE长,再根据垂直平分线的性质得出BE=CE即可.
    【详解】
    解:∵,,,
    ∴,
    ∵,D是BC的中点,垂足为D,
    ∴BE=CE,
    故选:D.
    【点睛】
    本题考查了勾股定理,垂直平分线的性质,解题关键是熟练运用勾股定理求出CE长.
    8、B
    【分析】
    根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.
    【详解】
    解:∵ADBC,
    ∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,
    ∴,故A正确,不符合题意;
    ∵ADBC,
    ∴△DOE∽△BOF,
    ∴,
    ∴,
    ∴,故B错误,符合题意;
    ∵ADBC,
    ∴△AOD∽△COB,
    ∴,
    ∴,故C正确,不符合题意;
    ∴ ,
    ∴,故D正确,不符合题意;
    故选:B
    【点睛】
    本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
    9、A
    【分析】
    作点A关于x轴的对称点,连接并延长交x轴于P,根据三角形任意两边之差小于第三边可知,此时的最大,利用待定系数法求出直线的函数表达式并求出与x轴的交点坐标即可.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【详解】
    解:如图,作点A关于x轴的对称点,则PA=,
    ∴≤(当P、、B共线时取等号),
    连接并延长交x轴于P,此时的最大,且点的坐标为(1,-1),
    设直线的函数表达式为y=kx+b,
    将(1,-1)、B(2,-3)代入,得:
    ,解得:,
    ∴y=-2x+1,
    当y=0时,由0=-2x+1得:x=,
    ∴点P坐标为(,0),
    故选:A
    【点睛】本题考查坐标与图形变换=轴对称、三角形的三边关系、待定系数法求一次函数的解析式、一次函数与x轴的交点问题,熟练掌握用三角形三边关系解决最值问题是解答的关键.
    10、C
    【分析】
    先根据数轴上点的位置,判断数a、b的正负和它们绝对值的大小,再根据加减法、乘法法则确定正确选项.
    【详解】
    解:由数轴知:﹣1<a<0<1<b,|a|<|b|,
    ∴选项A不正确;
    a+b>0,选项B不正确;
    ∵a<0,b>0,
    ∴ab<0,选项D不正确;
    ∵a<b,
    ∴a﹣b<0,选项C正确,
    故选:C.
    【点睛】
    本题考查了数轴上点的位置、有理数的加减法、乘法法则.理解加减法法则和乘法的符号法则是解决本题的关键.
    二、填空题
    1、50
    【解析】
    【分析】
    根据直角三角形中线的性质及互为余角的性质计算.
    【详解】
    解:,为边上的高,

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ,是斜边上的中线,


    的度数为.
    故答案为:50.
    【点睛】
    本题主要考查了直角三角形中线的性质及互为余角的性质,解题的关键是掌握三角形中线的性质.
    2、一
    【解析】
    【分析】
    正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
    【详解】
    解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“!”与“一”是相对面,
    故答案是:一.
    【点睛】
    本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
    3、##45度
    【解析】
    【分析】
    根据题意利用全等三角形的判定与性质得出和,进而依据进行计算即可.
    【详解】
    解:∵和均为等边三角形,
    ∴,

    在和中,

    ∴,
    ∴,
    ∴.
    故答案为:.
    【点睛】
    本题考查全等三角形的判定与性质以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.
    4、 (4,2) (0,4)或(0,-4)
    【解析】
    【分析】
    根据B点的平移方式即可得到D点的坐标;设点P到AB的距离为h,则S△PAB=×AB×h,根据S△PAB=S四边形ABDC,列方程求h的值,确定P点坐标;
    【详解】
    解:由题意得点D是点B(3,0)先向上平移2个单位,再向右平移1个单位的对应点,
    ∴点D的坐标为(4,2);
    同理可得点C的坐标为(0,2),
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴OC=2,
    ∵A(-1,0),B(3,0),
    ∴AB=4,
    ∴,
    设点P到AB的距离为h,
    ∴S△PAB=×AB×h=2h,
    ∵S△PAB=S四边形ABDC,
    得2h=8,解得h=4,
    ∵P在y轴上,
    ∴OP=4,
    ∴P(0,4)或(0,-4).
    故答案为:(4,2);(0,4)或(0,-4).
    【点睛】
    本题主要考查了根据平移方式确定点的坐标,坐标与图形,解题时注意:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.
    5、27x-27##-27+27x
    【解析】
    【分析】
    用两个互相垂直的长方形的面积之和减去重叠部分长方形的面积即可求解.
    【详解】
    解:“中”字的面积=3×3x+9×2x-3×9=9x+18x-27=27x-27,
    故答案为:27x-27
    【点睛】
    此题考查列代数式,掌握长方形的面积表示方法是解答此题的关键.
    三、解答题
    1、
    (1)①
    (2)的取值范围是
    (3)或
    【分析】
    (1)根据图形M与图形N是双联图形的定义可直接判断即可;
    (2)根据函数解析式联立方程,再根据“双联图形”的定义,由一元二次方程的判别式可得结论;
    (3)根据双联图形的宝座进行判断即可.
    (1)
    选项①的直线经过第一、二、三象限,且经过点(0,1)和(-1,0)
    又的半径为2,
    ∴这两个图形有且只有两个公共点,
    ∴这两个图形是“双联图形”;
    选项②的双曲线在第一、三象限与图1中的图象分别有两个公共点,一共有四个公共点,不符合“双联图形”的定义,
    故这两个图形不是“双联图形”;
    选项③的抛物线的顶点坐标渐(-1,2),并且开口方向向上,与图1中的图象· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    没有公共点,
    故这两个图形不是“双联图形”;
    ∴选①
    故答案为①;
    (2)
    已知直线与抛物线有且只有两个公共点,
    ∴将代入抛物线中,得,
    配方得,
    ∵方程有实数解,
    ∴即
    又直线不是双曲线的“双联图形”,
    ∴直线与双曲线最多有一个公共点,
    即当时,代入得,,即,
    ∴实数的取值范围是;
    (3)
    ∵是二次函数,

    ∵二次函数的顶点坐标为(-1,3),且对称轴为直线x=-1,
    ∴当时,二次函数的图象与的图象没有交点,
    ∴不成立;
    当时,二次函数的图象开口向下,为使它与互为双联图形,即有且只有两个公共点,
    ∴①当抛物线与AC和AB相交时,设直线BC的解析式为y=mx+n,
    把C(1,4),B(4,0)代入,得

    ∴,
    ∴y=-x+4,
    ∵抛物线与BC不想交,
    ∴,即ax2+(2a+1)x+a-1=0无实数根,
    ∴(2a+1)2-4a(a-1)

    相关试卷

    中考强化练习湖南省怀化市中考数学模拟考试 A卷(含答案及详解):

    这是一份中考强化练习湖南省怀化市中考数学模拟考试 A卷(含答案及详解),共28页。试卷主要包含了利用如图①所示的长为a,下列式子中,与是同类项的是,如图,E等内容,欢迎下载使用。

    中考强化练习河北省中考数学备考模拟练习 (B)卷(含答案详解):

    这是一份中考强化练习河北省中考数学备考模拟练习 (B)卷(含答案详解),共29页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。

    中考强化练习广西来宾市中考数学高频模拟汇总卷(含答案详解):

    这是一份中考强化练习广西来宾市中考数学高频模拟汇总卷(含答案详解),共24页。试卷主要包含了单项式的次数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map