所属成套资源:中考强化练习数学高频模拟汇总(28份试卷含答案解析)
中考强化练习贵州省安顺市中考数学备考模拟测评 卷(Ⅰ)(含详解)
展开
这是一份中考强化练习贵州省安顺市中考数学备考模拟测评 卷(Ⅰ)(含详解),共29页。试卷主要包含了单项式的次数是,已知,则的补角等于,如图,某汽车离开某城市的距离y,下列图形是全等图形的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知直线与双曲线相交于,两点,若点的坐标为,则点的坐标为( )
A.B.C.D.
2、抛物线的顶点为( )
A.B.C.D.
3、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.米B.10米C.米D.12米
4、如图,边长为a的等边△ABC中,BF是AC上中线且BF=b,点D在BF上,连接AD,在AD的右侧作等边△ADE,连接EF,则△AEF周长的最小值是( )
A.abB.a+bC.abD.a
5、有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是( )
A.|a|>|b|B.a+b<0C.a﹣b<0D.ab>0
6、单项式的次数是( )
A.1B.2C.3D.4
7、已知,则的补角等于( )
A.B.C.D.
8、如图,某汽车离开某城市的距离y(km)与行驶时间t(h)之间的关系如图所示,根据图形可知,该汽车行驶的速度为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.30km/hB.60km/hC.70km/hD.90km/h
9、下列图形是全等图形的是( )
A.B.C.D.
10、一枚质地均匀的骰子六个面上分别刻有1到6的点数,掷一次骰子,下列事件中是随机事件的是( )
A.向上的点数大于0B.向上的点数是7
C.向上的点数是4D.向上的点数小于7
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在中,中线相交于点,如果的面积是4,那么四边形的面积是_________
2、如图,平分,,,则__.
3、小明在写作业时不慎将一滴墨水滴在数轴上,根据图所示的数轴,请你计算墨迹盖住的所有整数的和为______.
4、下面给出了用三角尺画一个圆的切线的步骤示意图,但顺序需要进行调整,正确的画图步骤是________.
5、与是同类项.则常数n的值为________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,在第二象限,且,,.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)作出关于轴对称的,并写出,的坐标;
(2)在轴上求作一点,使得最小,并求出最小值及点坐标.
2、定义:两边的平方和与这两边乘积的差等于第三边平方的三角形叫做“和谐三角形”.如图1,在ABC中,若AB2AC2ABACBC2,则ABC是“和谐三角形”.
(1)等边三角形一定是“和谐三角形”,是______命题(填“真”或“假”).
(2)若RtABC中,C90,ABc,ACb,BCa,且ba,若ABC 是“和谐三角形”,求a:b:c.
3、如图,在中,,,,动点从点开始沿边向点以的速度移动,动点从点开始沿边向点以的速度移动.若,两点同时出发,当点到达点时,,两点同时停止移动.设点,移动时间为.
(1)若的面积为,写出关于的函数关系式,并求出面积的最大值;
(2)若,求的值.
4、如图1,在平面直角坐标系中,已知A(8,0),B(0,4),点P从点A出发,沿AO方向以2个单位长度/秒的速度运动,点Q从点O出发,沿OB方向以1个单位长度/秒的速度运动,当点P到点O的位置时,两点停止运动.设运动时间为t秒.
(1)当t为何值时,△POQ的面积为3;
(2)当t为何值时,△POQ与△AOB相似;
(3)如图2,将线段BA绕点B逆时针旋转45°至BD,请直接写出点D的坐标.
5、如图,已知函数y1=x+1的图像与y轴交于点A,一次函数y2=kx+b的图像经过点B(0,-1),并且与x轴以及y1=x+1的图像分别交于点C、D,点D的横坐标为1.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)求y2函数表达式;
(2)在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形.如果存在,求出点P坐标;如果不存在,说明理由.
(3)若一次函数y3=mx+n的图像经过点D,且将四边形AOCD的面积分成1:2.求函数y3=mx+n的表达式.
-参考答案-
一、单选题
1、A
【分析】
首先把点A坐标代入,求出k的值,再联立方程组求解即可
【详解】
解:把A代入,得:
∴k=4
∴
联立方程组
解得,
∴点B坐标为(-2,-2)
故选:A
【点睛】
本题考查了反比例函数与一次函数的交点问题,解题的关键是正确掌握代入法.
2、B
【分析】
根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).
【详解】
解:∵y=2(x-1)2+3,
∴抛物线的顶点坐标为(1,3),
故选:B.
【点睛】
本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).
3、B
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为-4,
∵水面AB宽为20米,
∴A(-10,-4),B(10,-4),
将A代入y=ax2,
-4=100a,
∴,
∴,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为-1,
∴
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
4、B
【分析】
先证明点E在射线CE上运动,由AF为定值,所以当AE+EF最小时,△AEF周长的最小,
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.
【详解】
解:∵△ABC、△ADE都是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴∠ABD=∠ACE,
∵AF=CF,
∴∠ABD=∠CBD=∠ACE=30°,
∴点E在射线CE上运动(∠ACE=30°),
作点A关于直线CE的对称点M,连接FM交CE于,此时AE+FE的值最小,此时AE+FE=MF,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵CA=CM,∠ACM=60°,
∴△ACM是等边三角形,
∴△ACM≌△ACB,
∴FM=FB=b,
∴△AEF周长的最小值是AF+AE+EF=AF+MF=a+b,
故选:B.
【点睛】
此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.
5、C
【分析】
先根据数轴上点的位置,判断数a、b的正负和它们绝对值的大小,再根据加减法、乘法法则确定正确选项.
【详解】
解:由数轴知:﹣1<a<0<1<b,|a|<|b|,
∴选项A不正确;
a+b>0,选项B不正确;
∵a<0,b>0,
∴ab<0,选项D不正确;
∵a<b,
∴a﹣b<0,选项C正确,
故选:C.
【点睛】
本题考查了数轴上点的位置、有理数的加减法、乘法法则.理解加减法法则和乘法的符号法则是解决本题的关键.
6、C
【分析】
单项式中所有字母的指数和是单项式的次数,根据概念直接作答即可.
【详解】
解:单项式的次数是3,
故选C
【点睛】
本题考查的是单项式的次数的含义,掌握“单项式中所有字母的指数和是单项式的次数”是解本题的关键.
7、C
【分析】
补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
【详解】
解:∵,
∴的补角等于,
故选:C.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
8、B
【分析】
直接观察图象可得出结果.
【详解】
解:根据函数图象可知:t=1时,y=90;
∵汽车是从距离某城市30km开始行驶的,
∴该汽车行驶的速度为90-30=60km/h,
故选:B.
【点睛】
本题主要考查了一次函数的图象,正确的识别图象是解题的关键.
9、D
【详解】
解:A、不是全等图形,故本选项不符合题意;
B、不是全等图形,故本选项不符合题意;
C、不是全等图形,故本选项不符合题意;
D、全等图形,故本选项符合题意;
故选:D
【点睛】
本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.
10、C
【分析】
根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.
【详解】
解:A. 向上的点数大于0,是必然事件,故此选项不符合题意;
B. 向上的点数是7,是不可能事件,故此选项不符合题意;
C. 向上的点数是4,是随机事件,故此选项符合题意;
D. 向上的点数小于7,是必然事件,故此选项不符合题意
故选C
【点睛】
本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
二、填空题
1、8
【解析】
【分析】
如图所示,连接DE,先推出DE是△ABC的中位线,得到,DE∥AB,即可证明△ABO∽△DEO,△CDE∽△CBA,得到,从而推出,即可得到,再由,即可得到,由,得到,则.
【详解】
解:如图所示,连接DE,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵AD,BE分别是BC,AC边上的中线,
∴D、E分别是BC、AC的中点,
∴DE是△ABC的中位线,
∴,DE∥AB,
∴△ABO∽△DEO,△CDE∽△CBA,
∴,
∴,
∴,
∴,
∴
∵,
∴,
∵,
∴,
∴,
故答案为:8.
【点睛】
本题主要考查了相似三角形的性质与判定,三角形中位线定理,熟知相似三角形的性质与判定条件是解题的关键.
2、##BC//DE
【解析】
【分析】
由平分,可得,再根据同旁内角互补两直线平行可得结论.
【详解】
解:平分,,
∴=2=110°,
,
∴∠C+∠CDE=70°+110°=180°,
.
故答案为:.
【点睛】
本题考查了角的平分线的性质,平行线的判定,熟练的掌握平行线的判定方法是解题关键.
3、-10
【解析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:结合数轴,得墨迹盖住的整数共有−6,−5,−4,−3,−2,1,2,3,4,
以上这些整数的和为:-10
故答案为:-10
【点睛】
本题主要考查数轴,解题的关键是熟练掌握数轴的定义.
4、②③④①
【解析】
【分析】
先根据直径所对的圆周角是直角确定圆的一条直径,然后根据圆的一条切线与切点所在的直径垂直,进行求解即可.
【详解】
解:第一步:先根据直径所对的圆周角是直角,确定圆的一条直径与圆的交点,即图②,
第二步:画出圆的一条直径,即画图③;
第三边:根据切线的判定可知,圆的一条切线与切点所在的直径垂直,确定切点的位置从而画出切线,即先图④再图①,
故答案为:②③④①.
【点睛】
本题主要考查了直径所对的圆周角是直角,切线的判定,熟知相关知识是解题的关键.
5、
【解析】
【分析】
所含字母相同,相同字母的指数也相同的单项式是同类项,根据同类项的概念可得答案.
【详解】
解: 与是同类项,
故答案为:
【点睛】
本题考查的是同类项的概念,掌握“利用同类项的概念求解字母指数的值”是解本题的关键.
三、解答题
1、
(1)见解析,,
(2)见解析,,
【分析】
(1)由题意依据作轴对称图形的方法作出关于轴对称的,进而即可得出,的坐标;
(2)根据题意作关于轴的对称点,连接两点与轴的交点即为点,进而设直线的解析式为并结合勾股定理进行求解.
(1)
解:如图所示,即为所求.,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)
解:如图点即为所求.点关于轴对称点.
设直线的解析式为.
将,代入得
,,
∴直线
当时,.,,
最小.
【点睛】
本题考查画轴对称图形以及勾股定理,熟练掌握并利用轴对称的性质解决线段和的最小值是解题的关键.
2、
(1)真;
(2)1::2
【分析】
(1)根据等边三角形的性质“三边都相等”,结合“和谐三角形”的定义即可判断;
(2)由勾股定理可知,根据是“和谐三角形”,可分类讨论:①当时;②当时;③当时,再结合,计算出符合题意的比即可.
(1)
根据等边三角形的性质可知:,
∴.
故等边是“和谐三角形”.
所以等边三角形一定是“和谐三角形”,是真命题.
故答案为:真.
(2)
∵是直角三角形,且,
∴,
由是“和谐三角形”,可分类讨论,
①当时.
故有,整理得:,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,整理得:.
∴.
此时,不符合题意(舍).
②当时.
故有,整理得:,
故此情况不存在(舍).
③当时.
故有,整理得:,
∴,整理得:.
∴.
【点睛】
本题考查判断命题的真假,等边三角形的性质和勾股定理.读懂题意,理解“和谐三角形”的定义是解答本题的关键.
3、
(1)面积的最大值为
(2)
【分析】
(1)动点从点A开始沿边向点以的速度移动,动点从点开始沿边向点C以的速度移动,所以,.从而,求二次函数最大值即可;
(2)先证,得,从而,即可得解.
(1)
解:由题意可知,,.
∴;
∵,
∴当时,.
∴面积的最大值为;
(2)
解:∵,,
∴.
∴.
即,
解得.
故t的值为.
【点睛】
本题结合三角形面积公式考查了求二次函数的解析式及最值问题,结合相似三角形的判定和性质考查了路程问题,解决此类问题的关键是正确表示两动点的路程(路程=时间×速度);这类动点型问题一般情况都是求三角形面积或四边形面积的最值问题,转化为函数求最值问题,直接利用面积公式或求和、求差表示面积的方法求出函数的解析式,再根据函数图象确定最值,要注意时间的取值范围.
4、
(1)t=1或3秒时,△POQ的面积为3
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)t=2或秒时,△POQ与△AOB相似
(3)D(6,4+2)
【分析】
(1)由题意知:OQ=t,OP=8-2t,则×t×(8-2t)=3,解方程即可;
(2)分或两种情形,分别代入计算;
(3)过点A作AE⊥AB交BD的延长线于E,作EF⊥x轴于F,利用K型全等求出点E的坐标,从而得出BE的函数解析式,再利用两点间距离公式可表示出BD,从而解决问题.
(1)
解:(1)由题意知:OQ=t,OP=8-2t,
∴×t×(8-2t)=3,
解得t=1或3,
∴t=1或3时,△POQ的面积为3;
(2)
当△POQ与△AOB相似时,
∵∠POQ=∠AOB,
∴或,
∴或,
解得t=2或,
∴t=2或时,△POQ与△AOB相似;
(3)
如图,过点A作AE⊥AB交BD的延长线于E,作EF⊥x轴于F,
∵将线段BA绕点B逆时针旋转45°至BD,
∴∠ABD=45°,
∴△ABE是等腰直角三角形,
∴∠BAE=90°,AB=AE,
∴∠BAO+∠EAF=90°,
∵∠BAO+∠ABO=90°,
∴∠EAF=∠ABO,
在△AOB和△EFA中
,
∴△AOB≌△EFA(AAS),
∴OA=EF=8,AF=OB=4,
∴E(12,8),
设直线BE的解析式为y=kx+4,
将E(12,8)代入得12k+4=8,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得k=,
∴y=x+4,
设D(m,m+4),
∵BD=BA==4,
∴m2+(m+4-4)2=(4)2,
解得m=6(负值舍去),
∴D(6,4+2).
【点睛】
本题考查了相似三角形的判定与性质,等腰直角三角形的性质,全等三角形的判定与性质,待定系数法求函数解析式等知识,求出直线BD的函数解析式是解题的关键.
5、(1)y=3x−1;(2)(0,5),(0,−1−),(0,−1),(0,).
(3)y3=x+或y3=x.
【分析】
(1)把D坐标代入y=x+1求出n的值,确定出D坐标,把B与D坐标代入y=kx+b中求出k与b的值,确定出直线BD解析式;
(2)如图所示,设P(0,p)分三种情况考虑:当BD=PD;当BD=BP时;当BP=DP时,分别求出p的值,确定出所求即可;
(3)先求出四边形AOCD的面积,再分情况讨论即可求解.
【详解】
解:(1)把D坐标(1,n)代入y=x+1中得:n=2,即D(1,2),
把B(0,−1)与D(1,2)代入y=kx+b中得:,
解得:,
∴直线BD解析式为y=3x−1,
即y2函数表达式为y=3x−1;
(2)如图所示,设P(0,p)分三种情况考虑:
当BD=PD时,可得(0−1)2+(−1−2)2=(0−1)2+(p−2)2,
解得:p=5或p=−1(舍去),此时P1(0,5);
当BD=BP时,可得(0−1)2+(−1−2)2=(p+1)2,
解得:p=−1±,
此时P2(0,−1+),P3(0,−1− );
当BP=DP时,可得(p+1)2=(0−1)2+(p−2)2,
解得:p=,即P4(0,),
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
综上,P的坐标为(0,5),(0,−1−),(0,−1),(0,).
(3)对于直线y=x+1,令y=0,得到x=−1,即E(−1,0);令x=0,得到y=1,
∴A(0,1)
对于直线y=3x−1,令y=0,得到x=,即C(,0),
则S四边形AOCD=S△DEC−S△AEO=××2− ×1×1=
∵一次函数y3=mx+n的图像经过点D,且将四边形AOCD的面积分成1:2.
①设一次函数y3=mx+n的图像与y轴交于Q1点,
∴S△ADQ1=S四边形AOCD=
∴
∴AQ1=
∴Q1(0,)
把D(1,2)、Q1(0,)代入y3=mx+n得
解得
∴y3=x+;
②设一次函数y3=mx+n的图像与x轴交于Q2点,
∴S△CDQ2=S四边形AOCD=
∴
∴CQ2=
∴Q2(,0)
把D(1,2)、Q2(,0)代入y3=mx+n得
解得
∴y3=x;
综上函数y3=mx+n的表达式为y3=x+或y3=x.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,利用了分类讨论的思想,熟练掌握一次函数性质是解本题的关键.
相关试卷
这是一份中考强化练习湖南省株洲市中考数学备考模拟测评 卷(Ⅰ)(含答案详解),共43页。试卷主要包含了下列图形是全等图形的是,一元二次方程的根为等内容,欢迎下载使用。
这是一份强化训练贵州省安顺市中考数学备考模拟测评 卷(Ⅰ)(含答案及详解),共23页。试卷主要包含了如图,下列条件中不能判定的是等内容,欢迎下载使用。
这是一份模拟测评贵州省安顺市中考数学模拟测评 卷(Ⅰ)(含答案详解),共25页。试卷主要包含了下列各式中,不是代数式的是等内容,欢迎下载使用。