终身会员
搜索
    上传资料 赚现金

    中考强化训练湖南省益阳市中考数学模拟专项测试 B卷(含答案详解)

    立即下载
    加入资料篮
    中考强化训练湖南省益阳市中考数学模拟专项测试 B卷(含答案详解)第1页
    中考强化训练湖南省益阳市中考数学模拟专项测试 B卷(含答案详解)第2页
    中考强化训练湖南省益阳市中考数学模拟专项测试 B卷(含答案详解)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考强化训练湖南省益阳市中考数学模拟专项测试 B卷(含答案详解)

    展开

    这是一份中考强化训练湖南省益阳市中考数学模拟专项测试 B卷(含答案详解),共32页。试卷主要包含了如图,点B,下列函数中,随的增大而减小的是等内容,欢迎下载使用。


    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、北京冬奥会标志性场馆国家速滑馆“冰丝带”近12000平方米的冰面采用分模块控制技术,可根据不同项目分区域、分标准制冰.将12000用科学记数法表示为( )
    A.B.C.D.
    2、一元二次方程的根为( )
    A.B.C.D.
    3、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
    A.米B.10米C.米D.12米
    4、如图是一个运算程序,若x的值为,则运算结果为( )
    A.B.C.2D.4
    5、一枚质地均匀的骰子六个面上分别刻有1到6的点数,掷一次骰子,下列事件中是随机事件的是( )
    A.向上的点数大于0B.向上的点数是7
    C.向上的点数是4D.向上的点数小于7
    6、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )
    A.B.
    C.D.
    7、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.2 个B.3 个C.4 个D.5 个.
    8、如图,点B、G、C在直线FE上,点D在线段AC上,下列是△ADB的外角的是( )
    A.∠FBAB.∠DBCC.∠CDBD.∠BDG
    9、下列函数中,随的增大而减小的是( )
    A.B.
    C.D.
    10、下列图像中表示是的函数的有几个( )
    A.1个B.2个C.3个D.4个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、两个人玩“石头、剪刀、布”游戏,在保证游戏公平的情况下,随机出手一次,两人手势不相同的概率是___________.
    2、已知(n为正整数)满足:,则__________.
    3、在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是________.(写一个条件即可)
    4、如图所示,已知直线,且这两条平行线间的距离为5个单位长度,点为直线上一定点,以为圆心、大于5个单位长度为半径画弧,交直线于、两点.再分别以点、为圆心、大于长为半径画弧,两弧交于点,作直线,交直线于点.点为射线上一动点,作点关于直线的对称点,当点到直线的距离为4个单位时,线段的长度为______.
    5、如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,己知点,· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    则点A的坐标是__________.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,已知函数y1=x+1的图像与y轴交于点A,一次函数y2=kx+b的图像经过点B(0,-1),并且与x轴以及y1=x+1的图像分别交于点C、D,点D的横坐标为1.
    (1)求y2函数表达式;
    (2)在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形.如果存在,求出点P坐标;如果不存在,说明理由.
    (3)若一次函数y3=mx+n的图像经过点D,且将四边形AOCD的面积分成1:2.求函数y3=mx+n的表达式.
    2、定义:两边的平方和与这两边乘积的差等于第三边平方的三角形叫做“和谐三角形”.如图1,在ABC中,若AB2AC2ABACBC2,则ABC是“和谐三角形”.
    (1)等边三角形一定是“和谐三角形”,是______命题(填“真”或“假”).
    (2)若RtABC中,C90,ABc,ACb,BCa,且ba,若ABC 是“和谐三角形”,求a:b:c.
    3、如图,在中,,将绕点C旋转得到,连接AD.
    (1)如图1,点E恰好落在线段AB上.
    ①求证:;
    ②猜想和的关系,并说明理由;
    (2)如图2,在旋转过程中,射线BE交线段AC于点F,若,,求CF的长.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    4、如图,在的正方形格纸中,是以格点为顶点的三角形,也称为格点三角形,请你在该正方形格纸中画出与成轴对称的所有的格点三角形(用阴影表示).
    5、如图,抛物线与x轴相交于点A,与y轴交于点B,C为线段OA上的一个动点,过点C作x轴的垂线,交直线AB于点D,交该抛物线于点E.
    (1)求直线AB的表达式,直接写出顶点M的坐标;
    (2)当以B,E,D为顶点的三角形与相似时,求点C的坐标;
    (3)当时,求与的面积之比.
    -参考答案-
    一、单选题
    1、C
    【分析】
    科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
    【详解】
    解:12000
    故选C
    【点睛】
    本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
    2、C
    【分析】
    先移项,把方程化为 再利用直接开平方的方法解方程即可.
    【详解】
    解:,


    故选C
    【点睛】
    本题考查的是一元二次方程的解法,掌握“利用直接开平方的方法解一元二次方程”是解本题的关键.
    3、B
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为-4,
    ∵水面AB宽为20米,
    ∴A(-10,-4),B(10,-4),
    将A代入y=ax2,
    -4=100a,
    ∴,
    ∴,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为-1,

    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
    4、A
    【分析】
    根据运算程序,根据绝对值的性质计算即可得答案.
    【详解】
    ∵<3,
    ∴=,
    故选:A.
    【点睛】
    本题考查绝对值的性质及有理数的加减运算,熟练掌握绝对值的性质及运算法则是解题关键.
    5、C
    【分析】
    根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解:A. 向上的点数大于0,是必然事件,故此选项不符合题意;
    B. 向上的点数是7,是不可能事件,故此选项不符合题意;
    C. 向上的点数是4,是随机事件,故此选项符合题意;
    D. 向上的点数小于7,是必然事件,故此选项不符合题意
    故选C
    【点睛】
    本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    6、B
    【分析】
    根据增长率问题的计算公式解答.
    【详解】
    解:第2年的销售量为,
    第3年的销售量为,
    故选:B.
    【点睛】
    此题考查了增长率问题的计算公式,a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.
    7、C
    【分析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
    (2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
    (3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
    (4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
    (5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
    故选C.
    【点睛】
    本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    8、C
    【分析】
    根据三角形的外角的概念解答即可.
    【详解】
    解:A.∠FBA是△ABC的外角,故不符合题意;
    B. ∠DBC不是任何三角形的外角,故不符合题意;
    C.∠CDB是∠ADB的外角,符合题意;
    D. ∠BDG不是任何三角形的外角,故不符合题意;
    故选:C.
    【点睛】
    本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
    9、C
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【分析】
    根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
    【详解】
    解:A.在中,y随x的增大而增大,故选项A不符合题意;
    B.在中,y随x的增大与增大,不合题意;
    C.在中,当x>0时,y随x的增大而减小,符合题意;
    D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
    故选:C.
    【点睛】
    本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
    10、A
    【分析】
    函数就是在一个变化过程中有两个变量x,y,当给定一个x的值时,y由唯一的值与之对应,则称y是x的函数,x是自变量,注意“y有唯一性”是判断函数的关键.
    【详解】
    解:根据函数的定义,每给定自变量x一个值都有唯一的函数值y与之相对应,
    故第2个图符合题意,其它均不符合,
    故选:A.
    【点睛】
    本题考查函数图象的识别,判断方法:做垂直x轴的直线在左右平移的过程中,与函数图象只会有一个交点.
    二、填空题
    1、
    【解析】
    【分析】
    画出树状图分析,找出可能出现的情况,再计算即可.
    【详解】
    解:画树形图如下:
    从树形图可以看出,所有可能出现的结果共有9种,两人手势不相同有6种,
    所以两人手势不相同的概率=,
    故答案为:.
    【点睛】
    本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.
    2、
    【解析】
    【分析】
    由 ,再依次计算 从而可得答案.
    【详解】
    解: ,

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·



    故答案为:
    【点睛】
    本题考查的是已知字母的值,求解代数式的值,理解运算法则的含义并进行计算是解本题的关键.
    3、∠ABT=∠ATB=45°(答案不唯一)
    【解析】
    【分析】
    根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.
    【详解】
    解:添加条件:∠ABT=∠ATB=45°,
    ∵∠ABT=∠ATB=45°,
    ∴∠BAT=90°,
    又∵AB是圆O的直径,
    ∴AT是圆O的切线,
    故答案为:∠ABT=∠ATB=45°(答案不唯一).
    【点睛】
    本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键.
    4、或
    【解析】
    【分析】
    根据勾股定理求出PE=3,设OH=x,可知,DH=(x-3)或(3- x),勾股定理列出方程,求出x值即可.
    【详解】
    解:如图所示,过点作直线的垂线,交m、n于点D、E,连接,
    由作图可知,,,点到直线的距离为4个单位,即,

    则,,
    设OH=x,可知,DH=(3- x),
    解得,,

    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    如图所示,过点作直线的垂线,交m、n于点D、E,连接,
    由作图可知,,,点到直线的距离为4个单位,即,

    则,,
    设OH=x,可知,DH=(x-3),
    解得,,

    故答案为:或
    【点睛】
    本题考查了勾股定理和轴对称,解题关键是画出正确图形,会分类讨论,设未知数,根据勾股定理列方程.
    5、(-3,9)
    【解析】
    【分析】
    设长方形纸片的长为x,宽为y,根据点B的坐标,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再结合点A的位置,即可得出点A的坐标.
    【详解】
    解:设长方形纸片的长为x,宽为y,
    依题意,得:,
    解得:,
    ∴x-y=3,x+2y=9,
    ∴点A的坐标为(-3,6).
    故答案为:(-3,9).
    【点睛】
    本题考查了二元一次方程组的应用以及坐标与图形性质,找准等量关系,正确列出二元一次方程组是解题的关键.
    三、解答题
    1、(1)y=3x−1;(2)(0,5),(0,−1−),(0,−1),(0,).
    (3)y3=x+或y3=x.
    【分析】
    (1)把D坐标代入y=x+1求出n的值,确定出D坐标,把B与D坐标代入y=kx+b中求出k与b的值,确定出直线BD解析式;
    (2)如图所示,设P(0,p)分三种情况考虑:当BD=PD;当BD=BP时;当BP=DP时,分别求出p的值,确定出所求即可;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (3)先求出四边形AOCD的面积,再分情况讨论即可求解.
    【详解】
    解:(1)把D坐标(1,n)代入y=x+1中得:n=2,即D(1,2),
    把B(0,−1)与D(1,2)代入y=kx+b中得:,
    解得:,
    ∴直线BD解析式为y=3x−1,
    即y2函数表达式为y=3x−1;
    (2)如图所示,设P(0,p)分三种情况考虑:
    当BD=PD时,可得(0−1)2+(−1−2)2=(0−1)2+(p−2)2,
    解得:p=5或p=−1(舍去),此时P1(0,5);
    当BD=BP时,可得(0−1)2+(−1−2)2=(p+1)2,
    解得:p=−1±,
    此时P2(0,−1+),P3(0,−1− );
    当BP=DP时,可得(p+1)2=(0−1)2+(p−2)2,
    解得:p=,即P4(0,),
    综上,P的坐标为(0,5),(0,−1−),(0,−1),(0,).
    (3)对于直线y=x+1,令y=0,得到x=−1,即E(−1,0);令x=0,得到y=1,
    ∴A(0,1)
    对于直线y=3x−1,令y=0,得到x=,即C(,0),
    则S四边形AOCD=S△DEC−S△AEO=××2− ×1×1=
    ∵一次函数y3=mx+n的图像经过点D,且将四边形AOCD的面积分成1:2.
    ①设一次函数y3=mx+n的图像与y轴交于Q1点,
    ∴S△ADQ1=S四边形AOCD=

    ∴AQ1=
    ∴Q1(0,)
    把D(1,2)、Q1(0,)代入y3=mx+n得
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    解得
    ∴y3=x+;
    ②设一次函数y3=mx+n的图像与x轴交于Q2点,
    ∴S△CDQ2=S四边形AOCD=

    ∴CQ2=
    ∴Q2(,0)
    把D(1,2)、Q2(,0)代入y3=mx+n得
    解得
    ∴y3=x;
    综上函数y3=mx+n的表达式为y3=x+或y3=x.
    【点睛】
    此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,利用了分类讨论的思想,熟练掌握一次函数性质是解本题的关键.
    2、
    (1)真;
    (2)1::2
    【分析】
    (1)根据等边三角形的性质“三边都相等”,结合“和谐三角形”的定义即可判断;
    (2)由勾股定理可知,根据是“和谐三角形”,可分类讨论:①当时;②当时;③当时,再结合,计算出符合题意的比即可.
    (1)
    根据等边三角形的性质可知:,
    ∴.
    故等边是“和谐三角形”.
    所以等边三角形一定是“和谐三角形”,是真命题.
    故答案为:真.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)
    ∵是直角三角形,且,
    ∴,
    由是“和谐三角形”,可分类讨论,
    ①当时.
    故有,整理得:,
    ∴,整理得:.
    ∴.
    此时,不符合题意(舍).
    ②当时.
    故有,整理得:,
    故此情况不存在(舍).
    ③当时.
    故有,整理得:,
    ∴,整理得:.
    ∴.
    【点睛】
    本题考查判断命题的真假,等边三角形的性质和勾股定理.读懂题意,理解“和谐三角形”的定义是解答本题的关键.
    3、
    (1)①见解析;②,理由见解析
    (2)3或
    【分析】
    (1)①由旋转的性质得,,,根据相似的判定定理即可得证;
    ②由旋转和相似三角形的性质得,由得,故,代换即可得出结果;
    (2)设,作于H,射线BE交线段AC于点F,则,由旋转可证,由相似三角形的性质得,即,由此可证,故,求得,分情况讨论:①当线段BE交AC于F时、当射线BE交AC于F时,根据相似比求出x的值,再根据勾股定理即可求出CF的长.
    (1)
    ①∵将绕点C旋转得到,
    ∴,,,
    ∴,,
    ∴;
    ②,理由如下:
    ∵将绕点C旋转得到,
    ∴,
    ∵,,,
    ∴,
    ∵,
    ∴,
    ∴,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴;
    (2)
    设,作于H,射线BE交线段AC于点F,则,
    ∵将绕点C旋转得到,
    ∴,,,
    ∴,,
    ∴,
    ∴,,即,
    ∵,
    ∴,
    ∴,
    ∵,,

    ①当线段BE交AC于F时,
    解得,(舍),
    ∴,
    ②当射线BE交AC于F时,
    解得(舍),,
    ∴,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    综上,CF的长为3或.
    【点睛】
    本题考查相似三角形的判定与性质以及旋转的性质,掌握相似三角形的判定定理以及性质是解题的关键.
    4、见详解
    【分析】
    先找对称轴,再得到个点的对应点,即可求解.
    【详解】
    解:根据题意画出图形,如下图所示:
    【点睛】
    本题主要考查了画轴对称图形,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.
    5、
    (1),,
    (2),或,
    (3)
    【分析】
    (1)求出、点的坐标,用待定系数法求直线的解析式即可;
    (2)由题意可知是直角三角形,设,分两种情况讨论①当,时,,此时,由此可求;②当时,过点作轴交于点,可证明,则,可求,再由点在抛物线上,则可求,进而求点坐标;
    (3)作的垂直平分线交轴于点,连接,过点作于点,则有,在中,,求出,,则,设,则,,则有,求出,即可求.
    (1)
    解:令,则,
    或,

    令,则,

    设直线的解析式为,




    ,;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (2)
    解:,,
    是直角三角形,
    设,
    ①如图1,
    当,时,,


    (舍或,
    ,;
    ②如图2,
    当时,
    过点作轴交于点,
    ,,


    ,即,



    (舍或,
    ,;
    综上所述:点的坐标为,或,;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (3)
    解:如图3,作的垂直平分线交轴于点,连接,过点作于点,




    在中,,





    设,则,,
    ,,,,,





    【点睛】
    本题是二次函数的综合题,求一次函数的解析式,解题的关键熟练掌握二次函数的图象及性质,三角形相似的性质与判定,分类讨论,数形结合也是解题的关键.

    相关试卷

    【中考特训】湖南省益阳市中考数学模拟真题 (B)卷(含答案及详解):

    这是一份【中考特训】湖南省益阳市中考数学模拟真题 (B)卷(含答案及详解),共27页。试卷主要包含了下列图像中表示是的函数的有几个,下列等式变形中,不正确的是等内容,欢迎下载使用。

    【中考特训】湖南省武冈市中考数学模拟专项测试 B卷(含答案详解):

    这是一份【中考特训】湖南省武冈市中考数学模拟专项测试 B卷(含答案详解),共25页。试卷主要包含了生活中常见的探照灯,下列式子中,与是同类项的是等内容,欢迎下载使用。

    【中考专题】湖南省益阳市中考数学模拟专项测评 A卷(含答案及详解):

    这是一份【中考专题】湖南省益阳市中考数学模拟专项测评 A卷(含答案及详解),共27页。试卷主要包含了如图个三角形.,代数式的意义是,已知,则的补角等于等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map