搜索
    上传资料 赚现金
    专题05 挑战压轴题--解答题三(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      05挑战压轴题--解答题三(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷)(原卷版).docx
    • 解析
      05挑战压轴题--解答题三(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷)(解析版).docx
    专题05 挑战压轴题--解答题三(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷)01
    专题05 挑战压轴题--解答题三(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷)02
    专题05 挑战压轴题--解答题三(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷)03
    专题05 挑战压轴题--解答题三(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷)01
    专题05 挑战压轴题--解答题三(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷)02
    专题05 挑战压轴题--解答题三(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷)03
    还剩12页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题05 挑战压轴题--解答题三(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷)

    展开
    这是一份专题05 挑战压轴题--解答题三(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷),文件包含05挑战压轴题--解答题三真题汇编+压轴特训-2024年中考数学冲刺挑战压轴题专题汇编杭州卷原卷版docx、05挑战压轴题--解答题三真题汇编+压轴特训-2024年中考数学冲刺挑战压轴题专题汇编杭州卷解析版docx等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。

    一、注意基础知识的整合、巩固。二轮复习要注意回归课本,课本是考试内容的载体,是高考命题的依据。浓缩课本知识,进一步夯实基础,提高解题的准确性和速度
    二、查漏补缺,保强攻弱。在二轮复习中,对自己的薄弱环节要加强学习,平衡发展,加强各章节知识之间的横向联系,针对“一模”考试中的问题要很好的解决,根据自己的实际情况作出合理的安排。
    三、提高运算能力,规范解答过程。在高考中运算占很大比例,一定要重视运算技巧粗中有细,提高运算准确性和速度,同时,要规范解答过程及书写。
    四、强化数学思维,构建知识体系。同学们在听课时注意把重点要放到理解老师对问题思路的分析以及解法的归纳总结,以便于同学们在刷题时做到思路清晰,迅速准确。
    五、解题快慢结合,改错反思。审题制定解题方案要慢,不要急于解题,要适当地选择好的方案,一旦方法选定,解题动作要快要自信。
    六、重视和加强选择题的训练和研究。对于选择题不但要答案正确,还要优化解题过程,提高速度。灵活运用特值法、排除法、数形结合法、估算法等。

    05挑战压轴题(解答题三)
    1.(2023·浙江杭州·统考中考真题)如图,在中,直径垂直弦于点,连接,作于点,交线段于点(不与点重合),连接.

    (1)若,求的长.
    (2)求证:.
    (3)若,猜想的度数,并证明你的结论.
    2.(2022·浙江杭州·统考中考真题)在正方形ABCD中,点M是边AB的中点,点E在线段AM上(不与点A重合),点F在边BC上,且,连接EF,以EF为边在正方形ABCD内作正方形EFGH.
    (1)如图1,若,当点E与点M重合时,求正方形EFGH的面积,
    (2)如图2,已知直线HG分别与边AD,BC交于点I,J,射线EH与射线AD交于点K.
    ①求证:;
    ②设,和四边形AEHI的面积分别为,.求证:.
    3.(2021·浙江杭州·统考中考真题)如图,锐角三角形内接于,的平分线交于点,交边于点,连接.
    (1)求证:.
    (2)已知,,求线段的长(用含,的代数式表示).
    (3)已知点在线段上(不与点,点重合),点在线段上(不与点,点重合),,求证:.
    1.如图,已知正方形ABCD,AB=6,点M为边CD上的动点,射线AM交BD于E交射线BC于F,过点C作CQ⊥CE,交AF于点Q.
    (1)当点M是CD中点时,求BE长;
    (2)求证:∠QCF=∠QFC;
    (3)若,求证:△CMQ是等边三角形.
    2.在正方形中,点为边上的点,连结,过点A作交于.
    (1)如图1,与相等吗?请说明理由;
    (2)如图2,连接,交于,于,连接,若,求;
    (3)在(2)的基础上,如图3,当EH//AD时,求的值.
    3.如图,内接于,,的外角的平分线交于点D,连接,,交于点F.
    (1)求证:是等腰三角形.
    (2)若.
    ①求证:.
    ②若的半径为5,,求的值.
    4.已知:四边形内接于,对角线交于点E,且.

    (1)如图1,求证:平分;
    (2)如图2,若为的直径.
    ①求证:;
    ②已知,,求的长.
    5.如图,AB为的直径,D是弧BC的中点BC与AD,OD分别交于点E,F
    (1)求证:;
    (2)求证:;
    (3)若,求的值.
    6.如图,△ACE内接于⊙O,AB是⊙O的直径,弦CD⊥AB于点H,交AE于点F,过点E作EG∥AC,分别交CD、AB的延长线于点G、M.
    (1)求证:△ECF∽△GCE;
    (2)若tanG=,AH=3,求⊙O半径.
    7.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.
    (1)求证:∠AED=∠CAD;
    (2)若点E是劣弧BD的中点,求证:ED2=EG•EA;
    (3)在(2)的条件下,若BO=BF,DE=2,求EF的长.
    8.如图,、是的两条弦,的延长线交于点,连结、,若,则:
    (1)求证:;
    (2)当时,求;
    (3)若,且面积为2,求的面积.
    9.如图,AF为⊙O的直径,点B在AF的延长线上,BE切⊙O于点E,过点A作AC⊥BE,交BE的延长线交于点C,交⊙O交于点D,连接AE,EF,FD,DE.
    (1)求证:EF=ED.
    (2)求证:DF・AF=2AE•EF.
    (3)若AE=4,DE=2,求sin∠DFA的值.
    10.
    (1)如图1,在等腰直角中,,,过点作直线,于,于,求证:;
    (2)如图2,在等腰直角中,,,过点作直线,于,于,,,求的长;
    (3)如图3,在平面直角坐标系中,,,为等腰直角三角形,,,求点坐标.
    11.(1)如图①,,射线在这个角的内部,点、在的边、上,且,于点,于点,证明:;
    (2)迁移应用:如图②,点,在的边、上,点,在内部的射线上,,分别是,的外角,已知,,猜想,与的关系,并说明理由.
    12.如图①,已知在中,,把一块含角的三角板的直角顶点D放在的中点上(直角三角板的短直角边为,长直角边为),点C在上,点B在上.

    (1)求重叠部分的面积;
    (2)如图②,将直角三角板绕D点按顺时针方向旋转,交于点M,交于点N.
    ①求证:.
    ②在此条件下重叠部分的面积会发生变化吗?若发生变化,请求出重叠部分的面积,若不发生变化,请说明理由.
    13.如图所示,在△ABC中(AB>AC),D、E分别在BC和BC的延长线上,且AD=AE,∠BAC=∠DAE,点K、H分别在BA上,点D、G分别在BC上,且BK=BD,BH=BG,连接KG并延长与AC延长线交于点F,且CF=CE.
    (1)求证:DH=KG;
    (2)求证:G为KF中点.
    14.如图,,已知直线上的两点于点B
    (1)如图1,若,过点C作,与直线交于点E
    ①判断线段满足的数量关系,并说明理由;
    ②若,求的长.
    (2)如图2,若,试探究线段之间的数量关系.
    15.如图①,在中,,于点,点是边上一点,连接并交于.交边于点.

    (1)求证:;
    (2)如图②,当O为边的中点,时,求的值.
    16.如图1,正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF⊥DE,垂足为点F,BF与CD相交于点G.
    (1)求证:△BCG≌△DCE;
    (2)如图2,连接BD,若BE=4,DG=2,求tan∠DBG的值.
    17.如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.
    (1)求C点的坐标;
    (2)如图1,在平面内是否存在一点H,使得以A、C、B、H为顶点的四边形为平行四边形?若存在,请直接写出H点坐标;若不存在,请说明理由;
    (3)如图1点M(1,﹣1)是第四象限内的一点,在y轴上是否存在一点F,使得|FM﹣FC|的值最大?若存在,请求出F点坐标;若不存在,请说明理由
    18.如图,中,,,垂足分别为,与相交于点,连接,且平分.
    (1)求证:;
    (2)若,平分外角,交的延长线于点,,求线段的长.
    19.如图,圆中两条互相垂直的弦,交于点.
    (1)求证:;
    (2)若点是的中点,圆的半径长,,求的长;
    (3)点在上,且,求证:.
    相关试卷

    专题02 挑战压轴题--填空题(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷): 这是一份专题02 挑战压轴题--填空题(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷),文件包含02挑战压轴题--填空题真题汇编+压轴特训-2024年中考数学冲刺挑战压轴题专题汇编杭州卷原卷版docx、02挑战压轴题--填空题真题汇编+压轴特训-2024年中考数学冲刺挑战压轴题专题汇编杭州卷解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    专题01 挑战压轴题--选择题(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷): 这是一份专题01 挑战压轴题--选择题(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷),文件包含01挑战压轴题--选择题真题汇编+压轴特训-2024年中考数学冲刺挑战压轴题专题汇编杭州卷原卷版docx、01挑战压轴题--选择题真题汇编+压轴特训-2024年中考数学冲刺挑战压轴题专题汇编杭州卷解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    2024年中考数学冲刺挑战压轴题专题汇编(安徽卷)05挑战压轴题(解答题三)(原卷版+解析): 这是一份2024年中考数学冲刺挑战压轴题专题汇编(安徽卷)05挑战压轴题(解答题三)(原卷版+解析),共51页。试卷主要包含了如图1,已知正方形,点为边的中点.等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题05 挑战压轴题--解答题三(真题汇编+压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(杭州卷)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map